Prebirth to Adolescence
Edited by April A. Benasich and Urs Ribary
This volume in the Strüngmann Forum Reports series explores the complex mechanisms that accompany the dynamic processes by which the brain evolves and matures. Integrating perspectives from multiple disciplines, the book identifies knowledge gaps and proposes innovative ways forward for this emerging area of cross-disciplinary study. The contributors examine maturation of nonlinear brain dynamics across systems from a developmental perspective and relate these organizing networks to the establishment of normative cognition and pathology seen in many neurodevelopmental disorders. The book looks at key mechanistic questions, including: What role does dynamic coordination play in the establishment and maintenance of brain networks and structural and functional connectivity? How are local and global functional networks assembled and transformed over normative development? To what degree do oscillatory patterns vary across development? What is the impact of critical periods, and which factors initiate and terminate such periods? It also explores the potential of new technologies and techniques to enhance understanding of normative development and to enable early identification and remediation of neurodevelopmental and neuropsychiatric disorders that may result from early disruption in dynamic coordination.
This volume of edited chapters by many leaders in this important field of study, is the product of one of the remarkable meetings organized by the Ernst Strungmann Forum, based on an in-depth symposium examining and debating the details of the fundamentally important question, 'how do early experiences influence brain development to determine who we become?' Much important information is provided by this influential volume, and essential unresolved questions, problems, and concerns are elucidated, making this an important read for experts and for those newly introduced to the issues raised therein.
Fred H. Gage
Adler Professor, Laboratory of Genetics, Salk Institute for Biological Studies
This highly readable volume gathers together an impressive group of neuroscientists who explore and debate how early neural plasticity and critical periods allow the developing brain's functional organization to emerge and shape our complex cognitive function as we mature. Babies grow and learn at a phenomenal rate. During those early formative years, the brain experiences tremendous changes in size, shape, and connectivity among its trillions of synapses. Many of these changes continue on well into adulthood. Despite these incomprehensibly complex dynamics, we maintain a relatively stable sense of cognition and self as we grow older. This volume captures what we currently know about early brain dynamics and deftly tackles fundamental, and still unanswered, questions including how our brains balance the ongoing dynamic, plastic underpinnings of our neurobiology with the relative stability of our cognition.
Bradley Voytek
Professor of Neuroscience, UC San Diego, and author of Do Zombies Dream of Undead Sheep?
This book offers the reader a thorough sampling of experimental approaches to understanding how neuronal assemblies are formed and maintained in the brain, and how they face the challenge of growth and development through adolescence and beyond—a must read for anyone interested in the wet stuff supporting the mind.
Albert Galaburda
Professor of Neurology and Neuroscience, Harvard Medical School, and Co-director, Mind Brain Behavior Interfaculty Initiative, Harvard University
This new volume in the Ernst Strüngmann Forum series uses a truly interdisciplinary approach to tackle the complex but core issue of emergent synchronization in brain activity. Unlike a typical collection of stand-alone chapters, the volume captures the exchange of an impressive group of scientists engaged in vigorous discussion and debate, merging well-accepted and cutting-edge findings into a revolutionary framework that could explain how functional synchronization in the healthy adult brain comes to be. Anyone interested in the brain—including neuroscientists who do not focus on brain development—will benefit from reading it. Indeed, this book may trigger a paradigm shift in our understanding of the role of brain dynamics subserving healthy function and disease, capturing the extraordinary progress that has been made to date, highlighting just how much is still unknown, and providing a blueprint for future research in this emerging field.
Holly Fitch
Professor of Behavioral Neuroscience and Director, Murine Behavioral Phenotyping Facility, Department of Psychological Sciences, University of Connecticut
Sylvain Baillet, Yehezkel Ben-Ari, April A. Benasich, Olivier Bertrand, Gyorgy Buzsáki, Alain Chédotal, Sam M. Doesburg, Gordin Fishell, Adriana Galván, Jennifer N. Gelinas, Jay Giedd, Pierre Gressens, Ileana L. Hanganu-Opatz, Rowshanak Hashemiyoon, Takao K. Hensch, Suzana Herculano-Houzel, Mark Hübener, Mark, Matthias Kaschube, Michael S. Kobor, Bryan Kolb, Thorsten Kolling, Jean-Philippe Lachaux, Ulman Lindenberger, Heiko J. Luhmann, Hannah Monyer, Sarah R. Moore, Charles A. Nelson III, Tomáš Paus, Patrick L. Purdon, Pasko Rakic, Urs Ribary, Akira Sawa, Terrence J. Sejnowski, Wolf Singer, Cheryl L. Sisk, Nicholas C. Spitzer, Michael P. Stryker, Migranka Sur, Peter J. Uhlhaas
ISBN: 9780262038638
Series Editor: J. R. Lupp
Editorial Assistance: M. Turner, A. Ducey-Gessner, C. Stephen
Photographie: N. Miguletz
Lektorat: BerlinScienceWorks
This Forum is supported by the Deutsche Forschungsgemeinschaft
The German Research Foundation
April A. Benasich and Urs Ribary, Chairs
Program Advisory Committee
Yehezkel Ben-Ari, April A. Benasich, Julia R. Lupp, Charles A. Nelson, Urs Ribary, Wolf Singer, and Terry Sejnowski
Goals of the Forum
Background
Synchronization of oscillations among brain areas across development is thought to mediate network assembly, coordination, and plasticity and to support emerging cognition, perception, and language. This process depends crucially on ongoing neural plasticity and the exquisite sensitivity to environmental cues that characterize early brain development. Many studies suggest that dynamic coordination is a key factor in these experience-dependent changes. Exploration of how maturational trajectories of local and large-scale brain networks unfold as well as the role that oscillatory mechanisms play in this process is a topic of intense interest across disciplines. Although much research has been conducted in this domain using animal models, similar questions are just beginning to be actively explored and defined in human development. However, the physiological mechanisms by which functionally related intrinsic and extrinsic elements are attended to, selected, and incorporated to construct evolving, maturing networks, and the computational theories that are invoked to describe this process, are still imprecisely defined.
For example, how is brain coordination accomplished at multiple levels across age? What central mechanisms are critical to maturation of the developing brain, and what roles do critical/sensitive periods play across maturation for both typical and atypical development. We know that the dynamics of local and long-range networks, within critical periods, are influenced by many factors (including genetics, epigenetics, neurotransmitter systems, cell-to-cell interactions and variation in structure and function) and that this equation may be altered either concurrently or predicatively in a number of neuropsychiatric disorders.
Several studies have shown that early insults, whether genetic or environmental, heavily impact developmental sequences of ionic currents and brain patterns leading to the presence of immature activity in the adult brain. These aberrant oscillations and synchronizations and/or enhanced or reduced functional connectivity constitute preclinical signatures of future disorders. The underlying concept is that pathological neurons recapitulate, to some extent, more immature neuronal stages. Such events have been shown to occur in relation to autism and migration disorders but may also be a factor in ADHD and LLDs. These issues have not been sufficiently investigated due to the large number of genetic mutations and putative relevant animal models and the difficulty of performing detailed anatomo-physiological studies of their features in embryonic brains. As a result, no consensus exists on the extent to which developmental and neuropsychiatric disorders may reflect early disruption in dynamic coordination and/or a failure to establish structural and functional connectivity and synchronization between cortical areas that support emerging cognitive processes. Thus, further investigation on a number of fronts, including the properties of misplaced and misconnected neurons, is essential.
This Forum is supported by the Deutsche Forschungsgemeinschaft
The German Research Foundation
Dynamic coordination over development is a rapidly expanding area of study, yet many unanswered questions persist as well as divergent views on how to approach such questions. Through this Forum we hope to make headway in defining key components across local and large-scale networks over development. Intense discussion within four working groups will be employed to identify gaps in current knowledge, identify priorities in this relatively unexplored area, and provide recommendations for multidisciplinary basic and clinical research. Overarching issues to be explored in all groups include:
Group 1: Fetal to Birth (preterm delivery)
Group 2: Early Childhood (0–3 yr)
Group 3: Early Adolescence (peripuberty)
Group 4: Late Adolescence (postpuberty)
This Forum is supported by the Deutsche Forschungsgemeinschaft
The German Research Foundation