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Four Unresolved Questions
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Abstract

The last decade has witnessed a marked shift of emphasis in cognitive neuroscience 
away from simple localization of function and toward the organization, coding, and 
dynamics of brain networks. This is surely a healthy evolution of our science, and the 
study of cognitive control has benefi ted from this shift, as much as any domain. Howev-
er, the emphasis on brain-wide networks for cognitive control has reopened some older 
debates, once thought resolved, while also introducing some new ones. This chapter 
focuses on four questions viewed as unresolved and fundamental because one’s par-
ticular answer to them commits to some basic theoretical diff erences regarding cogni-
tive control function: Are there one, many, or any networks whose primary function is 
best described as cognitive control? Are the networks supporting cognitive control in 
the  brain “hub-like” or “ hierarchical” in their intrinsic and extrinsic organization? Are 
the networks for cognitive control modulatory or transmissive in the pathway from 
thought to action? Does  controllability apply at the level of cognitive function or brain 
state? Each question is defi ned and relevant background is presented that could inform 
a resolution.

Introduction

A longstanding problem in cognitive science and neuroscience concerns how 
the brain supports cognitive control. In broad terms, cognitive control refers to 
the set of mechanisms needed to organize our thoughts or actions to achieve a 
goal, particularly when the behaviors involved are not well learned or habitual 
(Stuss and Benson 1987; Logan and Gordon 2001; Miller and Cohen 2001; 
Badre and Nee 2018; Badre 2020). Cognitive control allows us to strategically 
select responses appropriate to our circumstances, to adjust our behavior on 
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the fl y, and to adapt to open-ended problems and novel situations. It allows 
us to sustain  goal-directed behavior over multiple timescales and to withhold 
inappropriate responses, even when those responses are prepotent, habitual, or 
stem from the prevailing urges of the moment. Cognitive control function lies 
close to the heart of human intelligence and ingenuity. It is also vulnerable to 
defi cits across many, if not most, psychiatric and neurological disorders, be-
ing at the base of many of the behavioral problems arising in those conditions. 
Thus, understanding the mechanisms by which the brain supports cognitive 
control is a problem of fundamental importance.

Understanding cognitive control is of direct importance for intrusive think-
ing, the defi nition and scope of which is addressed in detail in other chapters 
of this volume. Most defi nitions, however, require that intrusions are unwanted 
and are unrelated to our goals or the task at hand. Thus, control mechanisms 
are an important means by which we both avoid intrusive thoughts and man-
age their impact. It follows that understanding the brain systems that support 
cognitive control function will have important implications for intrusive think-
ing, both in identifying its sources and seeking its potential remediation. In this 
chapter I review the brain networks that support cognitive control as a general 
background for more direct consideration of intrusive thinking.

As with most domains of cognitive neuroscience, the last decade of research 
into cognitive control in the brain has witnessed a shift away from a paradigm 
of functional localization toward one of  functional networks. Among the most 
robust and important observations to emerge from the overall network approach 
has been that sets of brain areas tend to covary mostly with each other and not 
with other areas (Power et al. 2011; Yeo et al. 2011; Buckner et al. 2013). Further, 
the structure of this covariation is not entirely due to spatial proximity. Rather, af-
fi liated areas can be distributed in each lobe of the brain, whereas other areas that 
are spatially contiguous may not affi  liate. These basic properties have allowed 
for defi nition of brain networks or clusters of areas that covary with each other at 
diff erent scales (Power et al. 2011; Yeo et al. 2011).

Here, I focus on four big questions that are provoked when one takes a net-
work view of cognitive control seriously:

• Are there one, many, or any networks whose primary function is best 
described as cognitive control?

• Are the networks supporting cognitive control in the  brain “hub-like” 
or “hierarchical” in their intrinsic and extrinsic organization?

• Are the networks for cognitive control modulatory or transmissive in 
the pathway from thought to action?

• Does  controllability apply at the level of cognitive function or brain state?

Obviously, this is not intended as an exhaustive list of questions about control 
networks. Rather, these are the kinds of questions that I fi nd myself asking 
routinely, whether in my own work or in reading about others’. No one has de-
fi nitive answers, and so these questions also remain contentious or unresolved. 
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My goal is not to provide answers in this essay, though I will express my own 
view. Rather, I will defi ne each question and present some relevant background 
in the hope of provoking further discussion.

Are There One, Many, or Any Networks 
Whose Function Is Cognitive Control?

One of the oldest questions in the study of cognitive control or executive func-
tion is whether there exists one or many  executive controllers in the mind and 
brain, or if there are executive controllers at all. The majority view has mostly 
been that, while there exists cognitive control function, it is not simply one 
thing. Rather, what we call executive function or cognitive control actually 
refers to a variety of specifi c functions and capacities.

Two camps reject this basic view. First, there are those who contend that 
there is one central system for cognitive control or executive function and that 
little to no decisive evidence exists for strong dissociations among subtypes of 
cognitive control functioning. The second camp argues that control is emergent 
from network processing in the brain, but that no particular area or network 
of areas is best characterized as primarily supporting “control.” Finally, even 
among those who agree that cognitive control exists and has many facets, there 
has been little agreement about the exact type and number of these facets.

This core debate has unfolded in almost every domain in which cognitive 
control has been studied: from behavior to individual diff erences to neuropsy-
chology to neuroimaging. Currently, it is playing out again in network neu-
roscience. I will devote some more space to this fi rst question than the other 
questions as it also provides an opportunity to summarize some background on 
the networks relevant to  cognitive control.

The Multiple Demand System: One Network to Control Them All

One reason  that the  unitary hypothesis  has been so hard to falsify conclusively 
is that it is often the null hypothesis (Aron et al. 2015). It predicts that in any 
setting in which one attempts to locate a diff erence based on a type of cogni-
tive control, there will be no diff erence. Thus, any imprecision in design, logic, 
or measurement has the potential to fi nd evidence consistent with this unitary 
view by virtue of being inconsistent with the alternative. As a consequence, 
the unitary view has been something of a “zombie hypothesis” over the years: 
falsifi ed in experiments that show dissociations in the brain or behavior, only 
to rise again a few years later when the same distinction is not found to gen-
eralize to a new task or the methodology changes. However, it is important to 
acknowledge that a failure to locate a diff erence, even in direct replication, is 
not itself positive evidence for a unitary controller. Rather, unitary controllers 
need positive predictions and evidence of their own.
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In this light, the defi nition of the multiple demand system put forth by 
John Duncan and colleagues is appealing as a unitary controller view of brain 
organization, because it is based on a positive prediction: the multiple de-
mand system is engaged when you perform any challenging or diffi  cult task 
(Duncan 2013). Under these diffi  cult circumstances, one needs to sequence 
the set of attentional states required to perform the task. It is also in these 
“hard” settings where one should expect the unitary cognitive control system 
to be engaged. Importantly, however, the specifi cs of the task in question or 
the demands that made the task diffi  cult are not important. This system should 
be fundamental and domain general, so that it participates across these diff er-
ent task settings.

To test this hypothesis, Fedorenko et al. (2013) conducted an  fMRI experi-
ment in which they contrasted diffi  cult versus easy conditions in a wide range 
of tasks. Diffi  culty was simply defi ned as a condition that took longer and 
induced more errors behaviorally. The tasks diff ered in their specifi c demands 
and the domain of input, such as between verbal or spatial. Nonetheless, when 
one contrasted the hard with the easy conditions of these tasks, a consistent 
set of areas was activated in each participant, as shown in Figure 11.1a. Given 
its defi nition, this network was dubbed the “multiple demand system” or MD 
system (Fedorenko et al. 2013).

The MD system has been studied extensively. It includes  premotor cortex, 
lateral  prefrontal cortex (PFC) around the inferior frontal sulcus, the intrapa-
rietal sulcus, the  anterior cingulate cortex (ACC), the frontal operculum, and 
subregions of the  basal ganglia (Fedorenko et al. 2013). This network has been 
associated with a variety of measures of fl exible behavior, including general 
intelligence (Woolgar et al. 2010) and novel rule following (Tschentscher et al. 
2017). In addition, most recently, it has been found to line up with the Human 
Connectome Project parcellation that is defi ned based on a range of structural 
and functional anatomical features (Assem et al. 2020).

As a unitary system, the MD system is proposed to serve a very gen-
eral control function needed across multiple complex tasks; namely, the 
assembly of attentional episodes that are the smallest unit chunks of a 
complex problem (Duncan 2013). When people seek to solve a new or 
diffi  cult task, it has long been thought that they must break the problem 
into parts (Newell 1990). From the MD theory, each part is defi ned by a 
set of input-output relations that are coordinated by attentional systems. 
The MD system is proposed to manage these attentional episodes and the 
transitions from one to the next. Thus, neural coding within this network is 
thought to be highly dynamic, changing from moment to moment in a tra-
jectory determined by the fl ow of attentional episodes. The consistent and 
widespread observation of fl exible and dynamic coding of prefrontal neu-
rons from  electrophysiological recording in the nonhuman primate shares a 
qualitative correspondence to this view of multiple demand coding (Rainer 
et al. 1998; Stokes et al. 2013).
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Frontoparietal Control System and the Cingulo-Opercular, 
Other Control System

As already noted, the functional defi nition of the MD system encompasses a 
wide and consistent set of frontal, parietal, and subcortical regions. However, 
evidence from analysis of functional connectivity in large resting-state data 
sets indicates that these areas are separable into at least two networks: a 
frontoparietal (FP) network and a cingulo-opercular (CO) network (Power 
et al. 2011; Gratton et al. 2018). Whole brain parcellations repeatedly lo-
cate diff erences in connectivity between these two networks across multiple 
methods, in large samples, and repeatedly in “deep sampled” fMRI subjects 
(Power et al. 2011; Yeo et al. 2011; Gordon et al. 2017; Gratton et al. 2018; 
Ji et al. 2019). Data from patients with brain damage to either regions of the 
FP or CO networks exhibit reduced functional connectivity at rest within that 
network but not across the networks, amounting to a double dissociation of 
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Figure 11.1 Networks activated across multiple task demands. (a) Activated regions 
of multiple demand systems: contrast of hard versus easy conditions in all tasks run 
(after Fedorenko et al. 2013). (b) Frontoparietal (FP) and cingulo-opercular (CO) net-
works defi ned through functional connectivity: diff erent methods of network defi nition 
fi nd convergent network defi nitions (after Gratton et al. 2018).
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functionally connected networks (Nomura et al. 2010). Further, this network 
distinction does not depend on studying connectivity at rest. A recent fMRI 
study reproduced this network diff erence in connectivity within the function-
ally defi ned MD system while participants performed a cognitive control 
task (Crittenden et al. 2016). Thus, the evidence is quite strong for a network 
distinction in functional connectivity among two major networks that make 
up the MD system.

Importantly, however, while the evidence for two networks within the MD 
system suggests distinct functions are served by these two networks, the evi-
dence for what those functions might be is neither strong nor clear. A meta-
analysis of executive function tasks proposed a functional distinction between 
the FP and  CO networks based loosely on timescale of control (Dosenbach et 
al. 2006, 2007, 2008). This analysis noted that the FP network was activated 
in tasks involving task cueing or adjustments of a task from feedback. The CO 
network, by contrast, was activated for these features in addition to demands 
to sustain control over time. Based on these observations and follow-up work, 
Dosenbach, Petersen, and colleagues proposed a distinction between “control 
implementation” by the FP network and “task set maintenance” by the CO 
system (see Gratton et al. 2018). These functional designations are intuitive, 
but they are not specifi ed in a concrete mechanistic or process-specifi c way.
To date, no study has cleanly operationalized these processes and pitted them 
against each other. Thus, no evidence of a functional double dissociation be-
tween control implementation and task set maintenance presently exists for the 
FP and CO networks.

It is notable in this context that other prominent frameworks have attributed 
more mechanistic functional diff erences to the  lateral PFC and  dorsal ACC 
areas that overlap with the FP and CO networks, respectively. For example, 
Botvinick proposed that the dACC may be important for detecting conditions 
that require control, such as response confl ict, and thereby signaling upreg-
ulation of control signals by lateral PFC (Botvinick et al. 2004). Recently, 
Shenhav et al. (2013) updated the confl ict detection model to suggest that ACC 
computes the expected value of control, a signal that specifi es the type and in-
tensity of control carried out by lateral PFC. Others have proposed that dACC 
has access to stimulus-response policies which allows it to make predictions 
and detect errors in response outcomes (Alexander and Brown 2011). The pre-
dicted response-outcome model captures this mechanism and can account for 
a wide range of results from both electrophysiology and neuroimaging. Still 
other models have suggested that dACC plays a role in computing value of 
counterfactual plans to be executed in the future (Fouragnan et al. 2019). Thus, 
several models propose a functional distinction between dACC and lateral 
PFC, which might extend to the FP and CO networks, though there is presently 
little agreement about what these diff erences might be or consistent empirical 
evidence for these distinctions.
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Hierarchical Control and Distinctions within the Frontoparietal System

Within the broadly defi ned FP network there is evidence for further func-
tional distinctions and subnetworks (e.g., Dixon et al. 2018). These distinc-
tions have been most consistently observed in the context of complex tasks 
that are designed to test  hierarchical cognitive control (Badre and Nee 2018). 
Hierarchical cognitive control refers specifi cally to cases where we must con-
trol actions based on immediate contextual signals, while also being infl uenced 
by higher-order superordinate control signals that are either more abstract pol-
icy or extended in time.

In general, if a task requires tracking multiple contextual signals to keep over-
lapping behavioral policies separate, demands on hierarchical control grow. For 
example, in a recent experiment, children and adults were instructed with a set of 
mappings between cartoon characters and left or right button presses, the “Go” 
task (Verbruggen et al. 2018). Prior to performing the Go task, however, partici-
pants were asked to view all of the cartoon characters, pressing the right button to 
advance to the next character (the “Next” task). This meant that while perform-
ing the Next task, participants would occasionally press the rightward arrow to a 
character that required a left response later on during the Go task. Such an over-
lap of responses can cause confl ict, evidenced in slowed response time during the 
Next task. However, this confl ict, is reduced if one can impose a latent context 
that separates the episode of the Next task from the later episode of the Go task 
and their respective response sets.

Interestingly, when doing the Next task, children exhibited more confl ict 
than adults; children had a harder time imposing this context episode on the 
task. Notably, this confl ict was evident even though they had never performed 
the Go task and were only instructed on the response rules for this task. So, 
it was not rule following that was a problem for the children, perhaps counter 
to the widely held view. The confl ict indicates they immediately implemented 
the rules just from the instruction. Rather, their slow response was a symptom 
of diminished hierarchical control capacity: they could not keep the latent task 
contexts separate.

Studies testing hierarchical control have consistently exposed diff erences 
within the FP control system (Figure 11.2a). Across a range of studies us-
ing fMRI, transcranial magnetic stimulation (TMS), and testing of patients 
with frontal lobe lesions, diff erences in policy abstraction (defi ned in terms 
of the number of conditions or branches in a decision tree between stimulus 
and response) yield diff erences along the caudal to rostral PFC, with the 
highest levels of abstraction associating with the rostral mid-dorsolateral 
PFC (Koechlin et al. 2003; Badre and D’Esposito 2007, 2009; Nee and 
D’Esposito 2016, 2017; Badre and Nee 2018). Further, manipulations of 
temporal abstraction, which refers to the degree to which a goal or task must 
be held pending over time, have found fMRI activation in the most rostral 
portion of the frontal cortex, the rostrolateral PFC (Koechlin and Hyafi l 
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2007; Desrochers et al. 2015; Nee and D’Esposito 2016; Badre and Nee 
2018). Perhaps relatedly, the rostrolateral PFC has also been implicated in 
tasks requiring information from memory, future directed thought, counter-
factual or alternative courses of action, or pending actions to act as control 
signals (reviewed in Badre and Nee 2018). For this reason, Nee and Badre 
gave this zone a general label of “schematic control” to emphasize its rela-
tionship with these types of computations.

Important to the present discussion, these distinctions along the lateral PFC 
are mostly encompassed within the broadly defi ned FP network. However, 
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Figure 11.2 Relationship of functional studies of hierarchical control and brain 
networks defi ned from functional connectivity. (a) Results from a meta-analysis of 
hierarchical control studies (after Badre and Nee 2018). The colors distinguish three 
functional zones related to diff erent hierarchical control demands related to using simple 
(sensorimotor control) or complex (contextual control) contexts to control responses. 
Schematic control refers to studies that manipulated temporal abstraction or subgoaling 
and branching demands. Small shapes are individual studies. Large shapes are average 
coordinates. Within the contextual control zone, spheres refer to second-order control 
and diamonds to third-order control and show a further separation rostral to caudal of 
these studies. (b) The 17-network parcellation from Yeo et al. (2011) with the three 
networks most overlapping the three zones highlighted (after Badre and Nee 2018). 
(c) The direct comparison of the Yeo et al. (2011) network parcellation with activation 
across four levels of hierarchical control, from Badre and D’Esposito (2007), shows the 
consistent network overlap in multiple lobes of the brain (after Choi et al. 2018).
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brain networks can be decomposed at multiple scales. Yeo et al. (2011) applied 
a clustering procedure to a functional connectome collected at rest in a large 
sample of participants. While one clustering solution, termed the 7-network 
parcellation, agreed with the coarse FP- and CO-network distinction, they also 
identifi ed a fi ner-grained 17-network parcellation that broke up the FP net-
work into more than one network (Figure 11.2b). This included, for example, a 
separate network for the rostrolateral PFC as distinct from the mid-dorsolateral 
PFC and from the  premotor cortex.

By comparing this 17-network structure with the functional delineations 
identifi ed by Badre and D’Esposito (2007) in the fMRI study of hierarchical 
control (Figure 11.2c), Choi et al. (2018) found that there was a correspon-
dence between the functional bounds associated with task-based diff erences in 
levels of hierarchical control and distinctions within the 17-network structure. 
Further, there were also eff ects of hierarchical control in distinct regions of the 
parietal cortex and medial frontal cortex in accord with the network structure 
(Choi et al. 2018). In a direct comparison, it was found that network member-
ship, rather than rostrocaudal location, best predicted the hierarchical level of 
a particular voxel (Badre and D’Esposito 2007). Thus, rather than a set of areas 
or a gradient going from front to back along the lateral frontal cortex, ranked 
by a factor like policy abstraction, Choi et al. (2018) found that there are a 
set of subnetworks within the FP network (or MD network) that are diff eren-
tially activated, based on complex control demands such as policy or temporal 
abstraction.

Frontostriatal Circuits and Gating Interactions

A further network property  of control  that has been highlighted by the study 
of hierarchical control is the potential importance of  corticostriatal loops 
in controlling interactions between separate frontal circuits (O’Reilly and 
Frank 2006; Collins and Frank 2014; Chatham and Badre 2015). It is well 
established that the basal ganglia form a series of loops with the frontal 
cortex via the  thalamus (Alexander et al. 1986; Haber 2003). In  motor con-
trol, these loops are thought to support a feedback-based gating function 
(Mink 1996). Specifi cally, candidate actions represented by cell populations 
in premotor cortex are initially too weak to fi re, because thalamic drive is 
under tonic inhibition by the  globus pallidus. However, these candidate ac-
tions in premotor cortex also send descending inputs to the  striatum. The 
striatum, including putamen and caudate, receive broad inputs, not just from 
this premotor region but from cortex more broadly. Cells in the striatum are 
modulated by the presence of  dopamine, which also induces plasticity so 
that these cells can learn which combinations of actions and context have 
been adaptive or not. Thus, the value of the actions considered in premotor 
cortex is computed as a function of what is being processed in cortex more 
broadly. If these actions have a history of being adaptive in this context, 
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“Go” cells in the striatum will elicit a cascade that ultimately disinhibits the 
thalamus and allows the action to be output (Mink 1996; Wickens, 1993; 
O’Reilly and Frank 2006).

One infl uential hypothesis is that these same corticostriatal feedback 
loops can operate over goal and context representations that are needed for 
cognitive control and that are maintained in  working memory by the lateral 
PFC (O’Reilly and Frank 2006). This computation is described using the 
metaphor of a gate on working memory. When the gate is closed, informa-
tion does not pass in or out of working memory. When it is open, working 
memory can be updated and top-down control signals deployed. The feed-
back loops of the  basal ganglia could operate as these gates by controlling 
transmission from one cortical network to another through their disinhibitory 
action on the thalamus.

Consistent with this hypothesis, there is evidence from  fMRI, patient, and phar-
macology studies for these corticostriatal interactions during tasks that specifi cally 
manipulate input and output gating of working memory (Frank and O’Reilly 2006; 
McNab and Klingberg 2008; Baier et al. 2010; Chatham et al. 2014; Chatham and 
Badre 2015). Furthermore, the loops between the lateral PFC and the basal gan-
glia are ordered and topographic, such that there are both macro- and microlevel 
loops between cortex and  striatum that are arrayed in an orderly fashion along 
the rostrocaudal dimension of the frontal lobes (Verstynen et al. 2012). Choi et 
al. (2018) reported convergent evidence of hierarchical ordering within the stria-
tum in  resting-state functional connectivity. Further, some evidence from fMRI 
and TMS provides functional support for separate loops that control context- and 
motor-level processing during rule learning and execution (Badre and Frank 2012; 
Jeon et al. 2014; Korb et al. 2017).

Interaction among multiple corticostriatal loops is a candidate mechanism 
for hierarchical control (see Figure 11.3; Frank and Badre 2012). Specifi cally, 
the gated output of superordinate contexts maintained in working memory by 
one network can act as a top-down infl uence on the corticostriatal gating loop 
controlling subordinate networks. In this way, multiple contingent contexts can 
interact hierarchically to control action.

Models of these multiple corticostriatal loop interactions have shown 
that they can effi  ciently learn abstract hierarchical rules, transfer these struc-
tures to new tasks, and exhibit the same quasi-parallel decision dynamics 
that humans employ when they perform hierarchical control tasks (Frank 
and Badre 2012; Collins and Frank 2013; Ranti et al. 2015). Further, gat-
ing of contextual representations is a means of controlling input and output 
through lateral PFC, thus breaking down hard problems into more manage-
able chunks. In this sense, these gating computations resemble Duncan’s 
conception of  an attentional episode (Duncan 2013). These computations 
emerge, however, from an interaction among separate, hierarchically or-
dered subnetworks.
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The Stopping Network

A rigorous and compelling line of research has associated a separate corti-
cobasal ganglia network with a distinct form of cognitive control from rule 
following and hierarchical control, namely stopping. Inhibitory control has 
long been a mainstay of cognitive control function. However, not all inhibitory 
behavior (e.g., slowing, stopping, or withholding what we are doing) is the 
consequence of an inhibitory process.

The distinction between inhibition as an outcome and inhibition as a coun-
termanding or stopping process has caused considerable confusion in the litera-
ture (Macleod et al. 2003). For instance, the Go/No-Go task commonly used to 
study inhibitory control might tap into an inhibition mechanism that prevents 
an urge to respond on No-Go trials. Not responding to a No-Go cue, however, 
could simply refl ect a decision not to go rather than an actual suppression of 
a Go response. This ambiguity clearly poses a challenge to the study of the 
systems underlying inhibitory control. Thus, to understand inhibitory control 
in the brain, it is important to test cases where an inhibitory process is required 
to stop an ongoing or initiated action or thought.

To test inhibitory control, the Stop-Signal task (SST) is the closest to a gold-
standard paradigm that we have (Logan and Cowan 1984). An action must be 
selected on every trial of the task in response to a “Go” stimulus. However, 
these initiated responses must be occasionally stopped when a “Stop” stimulus 
onsets at a delay after the Go stimulus. Success on the SST will thus depend on 
the deployment and intensity of an inhibitory process, measured behaviorally 
as the Stop-Signal response time and correlated with individual diff erences in 
inhibitory control, including relating to real-world impulsive behaviors such 

3rd-order loop 2nd-order loop 1st-order loop
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dlPFC

Pre-
PMd

PMd/
motor

CN CN P

Figure 11.3 Schematic of a nested, interacting corticostriatal loop network for hierar-
chical control. The details of the corticobasal ganglia loops have been simplifi ed in this 
diagram. Each loop is a feedback loop for one cortical network. However, the output of 
each network can act as a top-down infl uence on a lower-order loop. This nesting can 
provide a mechanism for multiple-contingent gating needed for complex, hierarchical 
control of behavior. Labeled areas are motor cortex (motor),  dorsal premotor cortex 
(PMd ), anterior dorsal premotor cortex (pre-PMd),  mid-dorsolateral prefrontal cortex 
(mid-dlPFC), globus pallidus (GP), putamen (P), and caudate nucleus (CN). Reprinted 
with permission from Badre and Nee (2018).
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drug addiction (Dalley and Robbins 2017). Not all impulsive behavior, how-
ever, is linked to inhibition tested by the SST.

Strong evidence from multiple sources has associated stopping in the SST 
with a brain network that includes the right inferior frontal cortex, the pre-
supplementary motor area (preSMA), and the  subthalamic nucleus (STN) (see 
Figure 11.4; Aron et al. 2004, 2007; Aron and Poldrack 2006). These regions 
are consistently activated in fMRI studies that employ the SST. Damage to the 
right  ventrolateral  PFC and preSMA causes defi cits in stopping that are dis-
sociable from other frontal regions, such as the dorsolateral PFC. Importantly, 
the right ventrolateral PFC, preSMA, and STN interact as a dynamic network 
to inhibit behavior (Aron et al. 2016; Wessel and Aron 2017). These regions 
are connected by direct white matter connections, the integrity of which cor-
relates with the speed of stopping (Forstmann et al. 2012).

STN is a key node in this stopping network (Isoda and Hikosaka 2008; Li et 
al. 2008; Schmidt et al. 2013). It projects an excitatory infl uence onto the glo-
bus pallidus, thereby enhancing its inhibitory infl uence over the thalamus. This 
pathway can rapidly bypass the gating computations occurring in the cortico-
striatal loops and put the brakes on behavior. Recent evidence  from an elegant 
optogenetic study in the mouse confi rms these basic features in the context of 
the stopping that occurs during surprise (Fife et al. 2017). Specifi cally, excit-
atory stimulation of the STN cells that project to the globus pallidus caused 
cessation of licking responses in a mouse. Then, inhibition of the STN elimi-
nated stopping due to a surprising stimulus.

The stopping network lies clearly distinct from the  FP network involved in 
contextual control that was discussed above (Aron et al. 2015). Even subcor-
tically, it appears most related to the distinct hyperdirect (rather than direct/
indirect) pathways through the basal ganglia. Thus,  motor inhibition may be 
another example of a dissociable form of control.

Further, there is growing evidence for a broader inhibitory role for this net-
work beyond countermanding motor actions. For example, we observed in-
creased theta band oscillations between preSMA and STN under conditions 
of greater uncertainty, and this coupling correlated with slowing of responses 
during the decision (Frank et al. 2015). Ostensibly through motor inhibition, 
the impact of control was functionally at the level of decision making. By 
stopping the output of a response, more evidence was allowed to accumulate 
before committing to a response; this is formally equivalent to setting a higher 
evidence threshold and making a more conservative decision. Finally, there 
is evidence that components of the stopping network, including the right in-
ferior frontal cortex, may also inhibit cognitive actions, specifi cally the act of 
retrieval from long-term memory (Guo et al. 2018; Castiglione et al. 2019). In 
sum, there is a separate brain network for fast stopping, and there may also be 
further subnetwork distinctions within this domain.
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Control without Controllers

The evidence presented above supports either one or several networks involved 
in control. However, a third perspective, most recently argued by Eisenreich et 
al. (2017), holds that none of these networks truly supports cognitive control 
as a unique function. Rather, since neurons are systems of distributed com-
putation, they have emergent features of control that arise naturally in such 
systems. From this perspective, cognitive control is an emergent property of 
network computation, and there is no specifi c system devoted to cognitive con-
trol in the brain (Eisenreich et al. 2017).

There are many examples of distributed systems in nature that display con-
trolled behavior without the presence of a central controller. Eisenreich et al. 
(2017) gives the example of a bee swarm searching for a good site to build a 
hive. Bees use dances to communicate to other bees that they have found, for 
instance, a good hive site. More bees will come to the site and do the dance 
if they agree with the location. Once enough bees are dancing at the site, the 
dance changes to a “build here” decision. At that point, a decision threshold 
has been passed, and the bees start to build. However, if there are multiple 
sites, there is confl ict. The bee swarms at each location grow more slowly, and 
so more time is required to reach a decision. Importantly, this control adjust-
ment is carried out at a “swarm level,” not at the level of any individual bee, as 

(a) (b) Premotor

M1 R-IFG

STN

GPi

preSMA

IFC

Motor
thalamus

Figure 11.4 Networks critical for stopping. (a) Cortically, the right inferior frontal 
cortex (IFC), sometimes termed ventrolateral prefrontal cortex, and the presupplemen-
tary motor area (preSMA) have been consistently implicated as playing a causal role in 
stopping during the Stop-Signal task (after Aron et al. 2007). (b) Schematic of the path-
ways between cortex, the subthalamic nucleus (STN), internal globus pallidum (GPi), 
and thalamus that are thought to support fast stopping (after Aron et al. 2016). R-IFG: 
right inferior frontal gyrus.
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no bee is aware of both locations. Thus, distributed systems exhibit dynamics 
that can be characterized as control.

To what degree is cognitive control similarly emergent? The strong version 
of this perspective proposes that there is no population of neurons in the brain 
that is devoted to representing a goal or that is directing actions toward it. 
Rather,  goal-directed behavior emerges naturally from the systems devoted to 
action and  perception and their local control dynamics. Control is distributed 
throughout the brain rather than being a function with a locus, whether that 
locus is a brain region or a network.

There is little positive evidence for the strong version of this viewpoint. 
Rather, the primary evidence is negative, questioning evidence for cognitive 
control networks in the brain and evidence of loss of function from brain lesions. 
For example, Eisenreich et al. (2017) focus on the complex and nonlinear mixed 
selectivity of neurons within the frontal and parietal association cortices in the 
networks discussed above to question whether these represent a goal or context 
as a top-down infl uence. In addition, Eisenreich et al. (2017) take a relatively 
dim view of human  fMRI and neuropsychology, noting that there are debates in 
these literatures, or mixed results, regarding most proposed networks. They take 
these debates to suggest that the evidence in favor of regions or networks that are 
devoted to cognitive control function is inconclusive at best.

However, in my view, the evidence in favor of networks for control is not 
as ambivalent as Eisenreich et al. suggest. The mere presence of complex and 
nonlinear mixed selective cell coding constrains the mechanisms for control, 
but it is not, in and of itself, at odds with these neural representations serv-
ing a control function. Likewise, Eisenreich et al. overstate the inconsistencies 
found in the neuroimaging and neuropsychological literatures to some degree. 
As described in the preceding sections, many fi ndings are now quite consistent 
and highly robust. The debates have boiled down to disagreements over func-
tional interpretations of fairly consistent distinctions. Nonetheless, from their 
skeptical position, Eisenreich et al. make a crucial point not to underestimate 
the inherent  controllability of any distributed system. In theorizing, it is impor-
tant to distinguish this kind of distributed but local control  from the centrally 
organized, goal-directed control we associate with cognitive control function.

Are Networks Supporting Control “Hub-Like” or “Hierarchical”?

To some degree, merely recognizing that a  network rather than a specifi c brain 
area is important for a function like cognitive control commits the same shal-
low theoretical error as “blobology” did in the early days of cognitive neuro-
science. Labeling a network merely assigns it a location without providing 
mechanistic insight or constraint on theory. However, the focus on networks 
for control, rather than individual areas, does off er an opportunity to consider 
new questions about the macro-level processing dynamics and functional 
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organization of those networks. Note that this is a distinct question from that 
considered above, which is concerned simply with whether there are multiple 
control-related networks and what their function might be. The question con-
sidered here is what the nature of the interaction among these networks, and 
others, might be. In this respect, one question to emerge out of the study of 
networks for cognitive control is whether these networks are hub-like or  hier-
archical in organization.

Viewing cognitive control systems as hubs is an intuitive and appealing the-
oretical idea. In essence, cognitive control systems manage or modulate rout-
ing between other systems of  perception and action to carry out tasks. Thus, 
these networks are central to the network dynamics of the brain, will be active 
across most tasks, and will exert broad infl uence. In other words, cognitive 
control networks are fl exible hubs, with near proximity to all other networks, 
and with the ability to change their connectivity with multiple other systems as 
needed to coordinate their dynamics during a task (Figure 11.5a).

Evidence from fMRI functional connectivity has provided some support 
for the hub hypothesis. Cole et al. (2013) scanned participants while they per-
formed sixty-four diff erent mini-tasks in the scanner. This procedure allowed 
changes in connectivity to be assessed while people were shifting the rules and 
domains over which they performed the tasks. Cole et al. observed that the  FP 
network showed the greatest variability in its connections with other networks 
across all the tasks relative to any other network, including the  CO network. 
Furthermore, rather than just refl ecting random variability in a small set of 
connections, FP also had the highest participation coeffi  cient, which derives 
from how uniform its connections are across all networks. From these obser-
vations, Cole et al. (2013) concluded the FP network was acting as a fl exible 
hub, changing its connectivity based on the task and thereby modulating the 
relevant network for a particular task. In subsequent work, this global cross-
task connectivity of the FP network has been associated with fl uid intelligence, 
a further clue to its potential importance for cognitive control, particularly dur-
ing rapid task instruction and execution (Cole et al. 2015).

To some degree, the fl exible hub model resembles a  unitary central con-
troller that is required to modulate all  other dynamics in the brain. As already 
noted, however, there are likely distinctions among networks for control, even 
within the FP system itself. Indeed, a recent analysis of functional connectiv-
ity patterns of the FP network across multiple task conditions found that this 
hub-like network was decomposable into at least two networks with diff erent 
patterns of connectivity, and that these patterns were similar to those identifi ed 
by Yeo et al.’s (2011) 17-network parcellation (Dixon et al. 2018).

An important alternative hypothesis to a global hub is that the subnetworks 
for control relate to each other hierarchically, such that some networks ex-
ert higher-order infl uence over other subnetworks, which in turn exert control 
over more restricted domains (Figure 11.5b). The cascade model (Koechlin 
et al. 2003) essentially proposed such a dynamic along the rostrocaudal axis 
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of the frontal lobe, such that abstract temporally extended control signals in 
rostral frontal cortex infl uence more temporally proximate contextual signals 
in lateral PFC, which in turn infl uence action control by premotor and motor 
cortex. Other models of hierarchical control have shared similar dynamics, 
including among nested corticostriatal loops and through medial PFC (Frank 
and Badre 2012; Alexander and Brown 2015).

In a set of two fMRI experiments, Nee and D’Esposito (2016, 2017) pro-
vided evidence for a hierarchical structure within lateral PFC. These studies 
used estimates of eff ective or directional connectivity from dynamic causal 
modeling while subjects performed a set of complex tasks that engaged vary-
ing degrees of hierarchical control in verbal versus spatial input domains. 
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control

(a)

(b)

(c)

Contextual
control
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Hierarchical control
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Figure 11.5 Hub versus hierarchical network organizations. (a) A hub network or-
ganization places a control network, like the frontoparietal network, at the center of 
coordinating other networks where it serves a general and fundamental role in orga-
nizing all other networks. (b) A hierarchical network organization allows for multiple 
controlling networks to share asymmetric infl uences with each other and to have dif-
ferences in their domains of control and proximity to other networks. (c) A schematic 
summary of the results from Nee and D’Esposito (2016, 2017) showing hierarchical 
interactions among frontal lobe networks (after Badre and Nee 2018). Regions along 
lateral prefrontal cortex are shown within the three control zones referenced in Figure 
11.2a. Heavy, unbroken arrows show strong directions of infl uence. Broken arrows 
depict weak infl uences. Colored arrows are domain- or task-specifi c infl uences. Abbre-
viations: mid-dorsolateral prefrontal cortex (mid-dlPFC), rostrolateral prefrontal cortex 
(rlPFC), ventral premotor cortex (prePMv), inferior frontal junction (IFJ) area, anterior 
dorsal premotor cortex (pre-PMd), frontal eye fi eld (FEF).
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Hierarchical strength was defi ned in terms of greater outward than inward con-
nectivity (i.e., a region has broader outputs than inputs, as defi ned in Badre et 
al. 2009).

The basic results from these experiments are summarized in Figure 11.5c: 
Mid-dorsolateral PFC was active in higher- (more abstract) but not lower-
order tasks across both input domains. It exerted an infl uence on the more 
caudal  dorsal  premotor cortex and ventral premotor cortex regions that were 
active across both the simpler and more complex tasks, but only in the spatial 
or verbal domain, respectively. These caudal contextual control regions also 
received domain-specifi c input from sensorimotor regions. The mid-dorsolat-
eral PFC received greater input from the rostrolateral PFC during conditions 
where temporal abstraction was required. In a follow-up TMS study, Nee and 
D’Esposito replicated these fi ndings and showed that stimulation of nodes in 
this network produced behavioral eff ects that were broadly consistent with this 
information fl ow.

These fi ndings from fMRI in humans converge with earlier anatomical stud-
ies in the macaque monkey. Goulas et al. (2014) performed an extensive meta-
analysis of monkey anatomical projections using the CoCoMac database and 
focused on the connectional asymmetry that might drive hierarchy. They coded 
multiple sites in the PFC based on the same defi nition of hierarchy as above: 
any area higher in the hierarchy would have broader eff erent connections to 
lower-order areas than the reverse. Consistent with Nee and D’Esposito, anterior 
mid-dorsolateral PFC (areas 45 and 46) showed the greatest asymmetry on this 
metric, relative to regions caudal to the mid-dorsolateral PFC or to the rostrolat-
eral PFC which is anterior to it (Goulas et al. 2014). Notably, although Goulas et 
al. (2014) did fi nd evidence that the mid-dorsolateral PFC was higher in terms 
of this network defi nition of hierarchy, it was not the most hub-like, based on a 
measure of betweenness centrality. This appears consistent with structural con-
nectivity metrics in humans as well (van den Heuvel and Sporns 2013).

It remains open how one should characterize the dynamics among networks 
supporting cognitive control. The broadly defi ned FP system exhibits a hub-like 
character, with high participation and fl exibility in connectivity across multiple 
tasks. There is also evidence that subnetworks within this overall system re-
late to each other hierarchically. In that system, there is no central domain 
general hub. Rather, the rostral mid-dorsolateral PFC is not active or neces-
sary across all tasks; it is necessary during those complex tasks that require 
higher-order contextual control. Lower-order areas within the FP system are 
activated across more tasks, but they are domain specifi c. Thus, a hierarchical 
control architecture assumes that global control of the whole system emerges 
from limited, local, and hierarchical interactions among control networks. This 
contrasts with a hub network that manages interactions broadly and globally.

Finally, it should be noted that there are other hierarchical models we 
have not discussed that yield diff erent organizations. For example, Barbas 
and Rempel-Clower (1997) proposed a laminar defi nition of hierarchy which 
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distinguishes regions based on their output versus input layers of cortex. This 
laminar defi nition of hierarchy also predicts hierarchical interactions within 
the FP system, but places the more rostral areas, like rostrolateral PFC, higher 
(Goulas et al. 2014). Thus, the architecture and organization of networks for 
control remains a mostly open question at present, but at least one core distinc-
tion is between those proposing hub-based interactions and those proposing 
hierarchical ones.

Are the Networks for Control Modulatory or Transmissive?

A core assumption in most brain and network theories of cognitive control is 
that their function is modulatory rather than transmissive. This dichotomy was 
highlighted by Miller and Cohen (2001) in their seminal review on the PFC and 
cognitive control. Their claim was that the PFC does not lie along the pathway 
from stimulus to action. Rather, a series of pathways from input to output exist 
in the brain that diff er in their various strengths of connection. Collectively, these 
pathways represent the full action repertoire of the system. What PFC contributes 
is a system set apart for maintaining contexts in  working memory and deploy-
ing them as control signals that can bias competition among these pathways for 
behavior. From this perspective, then, PFC is modulatory, not transmissive. As 
such, one could remove the PFC and this would not prohibit actions from oc-
curring in response to inputs. However, as PFC maintains high-level goals and 
contexts, its loss would prevent the system from selecting action pathways based 
on abstract, temporally remote, or task set information that is not available in 
the immediate stimulus. The result is primarily automatic behavior based on the 
strongest stimulus-to-response mapping.

As already noted, most current perspectives on the  brain networks for con-
trol take this modulatory view. These networks serve control by maintaining 
contexts; then through gated hierarchical interactions or fl exible hubs, they 
bias the right organization of the system to carry out the task that will achieve 
the desired goal or fi ts with that context.

There is renewed reason, however, to reconsider this accepted view, or at 
least the strong version that the PFC selectively maintains a context representa-
tion required for modulating other systems that route inputs to outputs. To see 
why, consider the problem of control as a route driven between two locations in 
a town. A good control system is set up such that any start point can reach any 
end point. This is often done by building some main roads through town that 
everybody uses. This is a generalizable system because the right combination 
of these roads can assemble any route. But, it also causes problems. As they 
are general and everyone uses them, such roads are susceptible to traffi  c. Thus, 
we have to add gates (traffi  c lights) and monitor where we are going. This is 
analogous to the interference or  competition among stimulus-response (SR) 
pathways that we experience in a task that overlaps with other tasks because 
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we are using general rules. Now consider that you have a particular route that 
is being used a lot. You could build an express road between those two loca-
tions in town: at some cost of time and asphalt, you then add some dimensions 
to your road system and gain a low traffi  c route. Increasing your dimensional-
ity is costly but highly effi  cient, if you know you need a particular set of routes.

From this analogy, one way to think about the transition from controlled to 
automatic behavior is to view it as a transition from a reliance on generaliz-
able, low-dimensional neural representations that are subject to interference 
to high-dimensional neural representations that take time to build but which 
directly map a combination of inputs to a response. These transformations 
could occur as transformations within frontal systems themselves. Early on, 
coordination among more networks, using gates and so forth, is necessary 
because a new task has to be assembled from low-dimensional components. 
However, over time, it is effi  ciently supported by a high-dimensional repre-
sentation that allows a more direct route from input to output. It is still routed 
through the PFC, where multiple contexts and goals can aff ect it, but just 
diff erently in terms of the format of the routing (e.g., from low to high dimen-
sions). This is diff erent from the modulatory view which requires that there 
are always the same separate tracks from input to output: control acts like a 
switch operator deciding which track gets to run and when. This is among 
the distinctions that Eisenreich et al. (2017) made in their argument  about 
emergent control systems and is captured by their schematic representations 
of diff erent control architectures (Figure 11.6).

The evidence for this transmissive rather than modulatory model of control 
is limited at present, but there are intriguing clues. First, the computational 
trade-off  described above between generalizable low-dimensional representa-
tions versus parallel high-dimensional representations has been shown in theo-
retical work using neural networks (Fusi et al. 2016; Musslick et al. 2017). 
Second, there is evidence from physiology in the nonhuman primate and  mul-
tivoxel pattern analyses of human fMRI data that the FP network does not 
encode single contextual features of tasks but rather large conjunctions of mul-
tiple task features (Woolgar et al. 2011, 2016; Rigotti et al. 2013; Pischedda et 
al. 2017). Presently, we lack clear evidence that separate areas or networks rep-
resent separate contexts or elements of a task. Third, maintenance in working 
memory may not be a fi xed-point system, wherein information is maintained 
in a single stable form to be accessed at any point as an external control sig-
nal. Rather, evidence from electrophysiology in monkeys and  EEG in humans 
suggests that neural ensembles undergo dynamic change over time (Stokes et 
al. 2013). Thus, these representations are themselves expressed in trajectories 
toward an end point. Finally, evidence from nonhuman primates has shown 
that the nonlinear mixed selectivity of PFC neural representations supports 
high-dimensional capacity during task performance (Rigotti et al. 2013). This 
is what allows these populations to encode multiple mixtures of their inputs 
in unique patterns that can be read out by downstream cells. Rigotti et al. also 
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provided evidence that this high-dimensional coding is behaviorally relevant, 
as trials in which a monkey committed an error were associated with a reduc-
tion in dimensionality.

It is important to emphasize that these results could be interpreted in several 
ways. It could be that high-dimensional representations are why the PFC can 
be fl exible. In other words, high dimensionality allows multiple input states to 
be mapped to multiple output states. Alternatively, as monkeys in these experi-
ments have been extensively trained on these tasks, they have automated the 
task and formed direct mappings from multiple input states to output states in 
a compact way. Regardless, both perspectives are largely transmissive in their 
view of the PFC rather than modulatory. PFC is part of the routing, but the 
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Figure 11.6 Schematic of the diff erence between modulatory versus transmissive 
control networks (after Eisenreich et al. 2017). In the modulatory control network (top 
panel), the contextual controller lies outside the pathways from stimulus to response. 
Its infl uence is like a switch operator, choosing which path from stimulus to response 
is enacted. Its removal removes controlled behavior, leaving behind only automatic 
behavior. In the transmissive control network (bottom), control networks are a part of 
the pathway from stimulus to response. The nature of these representations, however, 
changes over the course of experience with a task. Thus, transitions from controlled to 
automatic behavior are supported by features in the geometry of the population coding, 
such as high- versus low-dimensional coding.
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nature of the routing is constrained by the format of its representation, either 
high or low dimensional. These observations reopen the question of whether 
control networks are best characterized as modulatory, sitting outside the basic 
fl ow of perception to action, versus being a direct part of it but changing their 
format and coding as a function of automaticity.

Does  Controllability Apply at the Level of 
Cognitive Function or Brain State?

The conception of the mind and brain as a control system is one of executive 
function’s most animating theoretical ideas, dating back at least to Norbert 
Wiener’s mental-servo notions in Cybernetics (Wiener 1948) and the semi-
nal studies on the human operator in motor control by Kenneth Craik (1948). 
These ideas and their descendants rely on the engineering formalism of  opti-
mal control theory. In a control system, there is a set point, which is the desired 
system state, and mechanisms of feedback or prediction that lead the system to 
adjust toward the set point either in response to or in anticipation of changes 
to the system state.

In the classic example of a thermostat, the state of the system that mat-
ters is the temperature in your home. The set point is the desired temperature. 
Feedback to the system in the form of temperature measurements can result in 
heating or cooling actions that will change the temperature of the environment 
until the set point is reached. This is feedback control. Fancier modern ther-
mostat systems may also anticipate or learn about how ambient temperatures 
change over the course of a day. Such a system can engage proactive cooling or 
heating to maintain a stable set point, and so implement feedforward control. 
Regardless of its specifi cs, however, the effi  ciency with which a control system 
can reach its set point and the range of set points it can reach are a means of as-
sessing its quality. Control systems can be evaluated, compared, and optimized 
on the basis of their ability to reach any particular desired state from any initial 
state (termed controllability) and the effi  ciency with which they do so.

In cognitive control, control theory concepts have been historically posed 
at the cognitive-functional level. The set point is defi ned with reference to 
some real-world defi ned goal or target, such as drinking coff ee or making it to 
your connecting fl ight or naming the ink color in a  Stroop task. An eff ective 
control system is one that allows us to reach the widest range of such goal 
states effi  ciently, either in the world or our cognitive system, given a similarly 
wide range of initial contexts and situations. In this conception, maximal con-
trollability (i.e., being able to get to any output state given any input state) is 
presumably what cognitive neuroscientists intuitively mean when they use the 
term fl exible behavior.

From a control theory perspective, psychological or neural mechanisms 
must gather feedback or make predictions about the distance to desired set 
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points at this cognitive-functional level. Then, some mechanisms or pro-
cesses are proposed that select and implement mental or physical actions 
to reach them (e.g., moving, remembering, thinking, naming, inhibiting). 
Learning is similarly based on feedback from the world about one’s current 
functional-level state and the actions that were taken. In elaborating these 
models, neuroscience focuses on the neural mechanisms that implement 
these functional-level control operations.

The expected value of control model introduced above is an example of a 
theory of cognitive control that emphasizes  optimal control theory (Shenhav 
et al. 2013). From this perspective, a control problem occurs when there is a 
disparity between a goal state and the current state, such as response confl ict 
arising during a  Stroop task. The  control system, in this case the  dACC, is 
able to compute not only this distance but the mental eff ort needed to resolve 
it, in terms of the type and intensity of the control signal needed. This is 
the expected value of control; namely, the value of achieving the goal dis-
counted by the eff ort required to reach it. Decisions about what and when to 
engage control, then, can be made optimally by the brain as a function of these 
computations.

As with expected value of control, most models of cognitive control orga-
nize the control problem at this functional level and then draw links to neu-
ral mechanisms at diff erent degrees of specifi city. Recently, however, a new 
set of perspectives on control have emerged within a network connectivity 
framework and these emphasize a subtly diff erent level of controllability. For 
example, a line of sophisticated work has applied advanced network analysis 
techniques of white matter connections to characterize the controllability of 
the brain (Laurent et al. 2015a; Betzel et al. 2016; Gu et al. 2017; Khambhati 
et al. 2018). In brief, these analyses have emphasized how the density and or-
ganization of connections aff ect transitions within the space of possible brain 
states. Analyses within this paradigm have emphasized two kinds of transitions 
(Laurent et al. 2015a): transitions to common, “easy to reach” states are associ-
ated with densely connected networks, like the  default mode network, whereas 
transitions toward rare, “hard to reach” states are facilitated by networks with 
weak connections, such as the  FP and  CO networks (Figure 11.7). This sug-
gests that these control networks are well positioned for maximal controllabil-
ity, shunting the system into any desired brain state.

These exciting new ideas off er a powerful approach to understanding control 
in brain networks, and the search for translational, developmental, and clini-
cal correlates of these metrics is ongoing (Cornblath et al. 2019). However, as 
described, the underlying model of control in these cases diff ers fundamentally 
from the traditional functional-level control systems described above. These 
systems defi ne the control problem at the level of brain state rather than cog-
nitive function or real-world goal state. In other words, the control problem 
is not how do you get that particular drink you want, but rather how do you 
get the brain into a particular state that corresponds to having that drink. The 
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set point, then, is a target pattern of brain activity, not a real-world objective, 
and the control system must plot the distance between your starting pattern of 
brain activity and that goal pattern of brain activity through a functional con-
nectome. Finally, controllability is not defi ned in terms of how you behave but 
rather how readily you can shift from the brain state you are in to any desired 
brain state.

So, why aren’t these levels of theorizing about control the same? Isn’t this 
network conception just a reductionist reframing of the original functional-
level control problem in terms of brain states? This is certainly the way it is 
often posed and interpreted. However, a complication arises because of the 
classic philosophical problem of multiple realizability. This is exactly the case 
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Other
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Figure 11.7 Analysis of network controllability in the structural connectome (after 
Gu et al. 2015). Left: Networks show the highest average controllability, which refl ects 
how effi  ciently they can move to “easy to reach” brain states. The default network is the 
highest on this metric. Right: Networks show the highest modal controllability, which 
refl ects the effi  ciency with which they can move into “hard to reach” states. Highlighted 
in this analysis are the frontoparietal and cingulo-opercular networks.
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where this abstract philosopher’s thought problem has some real implications 
for scientifi c theory.

Multiple  realizability was famously raised by Hilary Putnam as an argu-
ment against identity theories in which each psychological state had one and 
only one implementation (Putnam 1967; Block and Fodor 1972). The argu-
ment is that multiple species or individuals within a species can realize the 
same psychological process, like pain or vision, with very diff erent brains. 
Thus, there is a many-to-one mapping of brain states to psychological states. 
David Marr’s idea of distinct levels of analysis relies on similar arguments 
about the asymmetry as one goes from computational to algorithmic to imple-
mentational levels (Marr 1982). Essentially, the functional or psychological 
level is abstraction over multiple possible realizations of algorithms and imple-
mentations within the brain.

The implications of this concept for cognitive control are important. For the 
reductionist reframing to correspond directly to the functional-level models, 
there must be a one-to-one correspondence between any one functional-level 
state (e.g., drinking) and a corresponding brain state (or a highly correlated 
class of such states). However, as the problem of multiple realizability high-
lights, this assumption is hardly guaranteed. Rather, the goal of having that 
drink may entail a wide range of activities to get there and a wide set of pos-
sible realizations of actually quenching one’s thirst. Each of these is associated 
with a set of brain states. Some may not be more strongly correlated with 
each other than with other states, and so comprise a disjunct set. Thus, what 
ultimately connects this disjunct class of brain states is the functional-level 
outcome, drinking. As such, conducting control at the functional level would 
be the best way to ensure success, rather than making specifi c brain states a 
set point.

A further issue concerns feedback in a brain state control system. To work 
at the brain state level, the control system needs a means of detecting its dis-
tance from its set point. But, we don’t have explicit access through the senses 
into our actual brain state, in terms of what neurons are fi ring and when. We 
do, however, have access to a functional-level description, like whether we are 
drinking or not. This feedback is also essential for the control system to learn 
and know what actions to take to reach a goal in the future. Without assuming 
a direct correspondence between the functional and brain state level that vio-
lates multiple realizability, feedback about the specifi c brain state target is not 
available to the control system in an obvious way. This is a problem if one’s 
control system is operating primarily at a brain state level. We do, however, 
have perceptual systems that can assess the real-world outcome of our actions 
and can use these to assess our state.

What this discussion highlights is that computing the distance to a goal 
and seeking inputs that minimize that distance is diff erent, depending on 
whether one is mapping the distance to a particular brain state or the distance 
to a disjoint set of such states defi ned by a functional outcome. Even if one 
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allows for some correlation among that set of states, it is easy to see how the 
problem gets quite complicated in the latter case, if the control system has no 
access to the functional-level description and is instead optimizing control 
over brain states.

These complications notwithstanding, the issue of level of controllability 
remains unresolved. It is not clear to me that the conventional functional view 
is necessarily always the correct one or whether both options might not be 
true and infl uence matters under diff erent circumstances. At the level of plan-
ning, awareness, and explicit control, the functional-level description of con-
trol might be the appropriate level at which to understand cognitive control 
for the reasons discussed above. As such, learning and feedback mechanisms 
must ultimately reference this level of analysis. Neural accounts must explain 
how the brain supports this functional-level control system, deploying neural 
mechanisms that interpret the state of the world with respect to goals, compute 
distances to real-world hypothetical and counterfactual outcomes, defi ne the 
means to cross that space, and monitor progress as it goes. However, for other 
kinds of control, such as  switching  among well-learned tasks or adjusting on 
the fl y to maintain a stable trajectory of behavior, things may be diff erent. In 
these cases, the principles and constraints of brain-level network control may 
be the most relevant feature determining individual variability in success, even 
for functional-level outcomes.

In sum, whether control plays out at a primarily functional versus brain 
level is an important open question, particularly as we take more sophisticated 
approaches to understanding dynamics within the brain’s connectome. These 
levels of controllability are not mutually exclusive, as both may infl uence con-
trolled behavior. This discussion highlights the importance of being explicit 
about the level at which we assume control is occurring in our theorizing, 
and that it is not trivial to assume that brain state control is isomorphic with 
functional-level control.

Concluding Thoughts

The emergence of network neuroscience has brought with it an opportunity 
to reevaluate some older questions about control and to raise some new and 
exciting ones. Answers to these questions frame most of the major theories of 
cognitive control in the brain, with each of them staking out a position implic-
itly or explicitly along these lines. As I noted at the beginning, however, this 
is hardly an exhaustive list of the major questions facing control theorists. For 
example, neural dynamics clearly constitute a very important aspect of brain 
processing, and how dynamics among networks relate to control is only start-
ing to be understood. One can easily think of other such questions. This essay 
is merely a starting point for considering the implications that network neuro-
science holds for our understanding of cognitive control function and the level 
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of neural and psychological mechanism. With relevance to this volume, these 
concerns will also constrain any conception of control of intrusive thought as 
well as the ways one might intervene.
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