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Abstract

How do the  computations of the cerebral cortex and subcortical structures account for 
human  perception,  cognition, and affect? Answering this question requires understand-
ing how the neurobiological and functional properties of the human brain give rise to 
the repertoire of human faculties and behavior, and hence, an understanding of the neu-
ral mechanisms that implement these functions. While research over the past decades 
has made substantial progress toward this end, signifi cant challenges still lie ahead, 
and new opportunities open up daily as neuroscience and related fi elds develop and 
implement new theories and technologies. To (begin to) address these challenges, this 
chapter explores conceptual and methodological aspects inherent to the study of the 
neurobiology of the human mind that are at the core of the current “central paradigm” 
(Kuhn 1962) in neuroscience, but are often taken for granted and undergo little scrutiny. 
In particular, it discusses what defi nes or constitutes “uniquely human” mental capaci-
ties, the promises and pitfalls of using  animal models to understand the human brain, 
whether neural solutions and computations are shared across species or repurposed for 
potentially uniquely human capacities, and what inspiration and information can be 
drawn from recent developments in  artifi cial intelligence. Attention is given to laying 
out desiderata for future investigations into the human mind.
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Singular or Not? The Human Animal

To understand the structure and function of human brains, one must address the 
question of potential uniqueness or singularity, ever cognizant that the word 
“uniqueness” raises its own set of provocative questions. The human cortex 
has structural and physiological properties that underwrite neuronal activity 
which in turn underpins the implementation of computations that may or may 
not be specifi c to the function of the human brain. Further defi nition, however, 
is required when we ask whether the potential distinctions between human 
brain, computational inventory, or behavioral repertoire, compared to other 
species, are a matter of degree, as argued for by Darwin (1888), or systemic 
discontinuities (Fitch 2012; Parravicini and Pievani 2018; Ghazanfar, this vol-
ume). Discontinuity of evolution is clearly not an idea that is widely endorsed. 
Rather than rehearse potential uniqueness features, we might instead pursue 
the argument of commonalities. We contend, however, that this is just as dif-
fi cult as identifying properties that are apparently found only in human cortex.

For the sake of argument, we take the position that some distinctions be-
tween humans and other species can be readily identifi ed, and we take it as our 
task to understand how to account for such species-typical features. One exam-
ple that points to human-specifi c organization concerns the suite of operations 
that comprise  combinatorics. These come to light in  language,  mathematics, 
 music,  theory of mind, and potentially in other domains not yet understood as 
well in terms of formalization.

In the  language domain, it has long been argued that only humans have the 
capacity to produce the kinds of representations characteristic of  syntax (e.g., 
 Merge). To date, there is no clear case of a nonhuman primate that has learned 
to combine words systematically according to a  complex  grammar (Terrace et 
al. 1979; Yang 2013). In the few cases in which nonhuman primates have been 
able to produce sequences adhering to a supra-regular grammar, this was only 
accomplished after extensive training (over 10,000 trials), whereas preschool 
children master this behavior in less than fi ve trials (Wang et al. 2018). In 
 numerical  cognition (i.e., the sense of number and capacity for mathemati-
cal thinking), it is well established that monkeys and humans start life with a 
similar approximate number system (Dehaene 2011). The acquisition of verbal 
counting and a system of Arabic numerals allows human children to move 
from an approximate, compressive representation of numerical quantities to 
an exact, linear system of number (Siegler and Opfer 2003; Dehaene 2011). 
In the absence of formal education (e.g., in indigenous Amazon populations), 
the approximate system remains largely unchanged in human adults (Pica et 
al. 2004). Monkeys can be taught some number symbols, and this leads them 
to become somewhat more precise in a number comparison task (Livingstone 
et al. 2010). They may even begin to understand the rudiments of addition 
and subtraction (Livingstone et al. 2014). Yet, they continually make errors, 
even under highly motivating reinforcement schedules, and never perform at 
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the level of precision and exactness attained even by young human children. 
Arguably, sharp distinctions between precise consecutive numbers, as those 
between truth and falsehood, may be unique to humans: the formation of a 
complex combinatorial system of  arithmetic certainly is.

Accepting that there are domains of behavior that may be singular to hu-
mans leads us to ask in which ways those operations are different: Are they 
rooted in simpler forms of behavior that can be useful to study when trying 
to understand how uniquely human behaviors emerged? In which way are the 
structure of the cerebral cortex and its neural codes different, relative to the 
brains and codes that implement these more basic behaviors? Have neural 
codes been exapted or created de novo for new functions?

Addressing these questions is inextricably linked with exploring neural solu-
tions in other species to establish convergence and divergence. The usefulness 
of a comparative approach to understand the human brain and its dysfunctions 
is clear, yet there are a number of outstanding challenges that complicate such 
an enterprise. These challenges must be factored into any discussion if prog-
ress is to be made in understanding which neural solutions and computations 
might be shared across species or repurposed for potentially uniquely human 
capacities.

The Challenges of Understanding the Neurobiology 
of Human Cognition through Animal Models

The most straightforward approach to understanding the complexities of the 
human brain is to study the human brain itself, and with the emergence and re-
fi nement of a range of neuroimaging technologies, progress has been achieved 
over the last decades. For ethical and technological reasons, however, direct 
access to neural activity on a spatial scale, deemed necessary to unravel the 
neural computations that give rise to  cognition and  perception (i.e., for popula-
tions of individually resolvable neurons), is extremely limited in humans. Such 
recordings are currently only possible in patients who undergo brain surgery for 
tumor resection (e.g., Desmurget et al. 2009), implantation of deep-brain stimu-
lation electrodes (e.g., Wahl et al. 2008; Cavanagh et al. 2011), or invasive  epi-
lepsy monitoring (e.g., Ding et al. 2016; Schwiedrzik et al. 2018); that is, only 
in brains that are affected by disease. These recordings are serendipitous in na-
ture because they rely on recording sites that are selected for monitoring based 
solely on clinical considerations. Therefore, we must rely on animal models 
for the most part to leverage neuroscientifi c toolsets available for the study of 
the brain, including system perturbation and circuit manipulations. This ne-
cessitates making assumptions and compromises about the aspects of human 
cognition that can be realistically modeled by the species serving as a model.

One common implicit and often untested assumption in the fi eld pertains 
to  homology. Specifi cally, it is commonly assumed that differences among 
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species are a matter of degree, such that mechanisms are conserved across 
phylogeny (perhaps with a scaling function). Thus, studies in other animals are 
thought to advance our understanding of human cognition and the human brain 
through a relatively straightforward translation of fi ndings from one brain to 
another. Taking nonhuman animals as a suffi ciently faithful model of human 
brain function or dysfunction (e.g., for depression or  schizophrenia) is clearly 
useful and has provided important insight into the neurobiology of cognition. 
For example, although their evolutionary lineages split some 25 million years 
ago (Kumar and Hedges 1998), Old World nonhuman primates and humans 
both have a system to represent numerical quantities with striking similari-
ties (Nieder and Dehaene 2009). At the same time, since we do not fully un-
derstand mammalian and cross-species homologies, we are often surprised at 
how challenging  it is to  translate pathophysiological mechanisms from murine 
animal models to primate models to humans for clinical purposes (Sena et 
al. 2010; van der Worp et al. 2010). This leads to questions on how readily 
insights in basic neuroscience obtained in another species are translatable to 
humans without a more complete understanding of homologies and specializa-
tions across the relevant species. Furthermore, as our understanding of human 
and nonhuman brains advances, more differences become apparent: the orga-
nizational principles of inter-areal connections, for example, seem to differ 
fundamentally between rodents and primates (Horvat et al. 2016; Gamanut 
et al. 2018), and there are multiple, potentially nontrivial differences in the 
structure of the  visual system between macaque monkeys and humans (Preuss 
2004). Still, commonalities also become more evident: even parts of  prefron-
tal cortex thought to have specialized in humans, such as Broca’s area, show 
remarkably conserved cyto- and receptor-architectonic patterns between mon-
keys, apes, and humans (Zilles and Amunts 2018).

The mere issue of establishing  homology is complicated in and of itself 
(Rendall and Di Fiore 2007; Hall 2013). In the past, homology has predomi-
nantly been addressed on the level of morphological features (structural ho-
mology). Nowadays, the concept of homology has been expanded to other 
aspects, including behavior (phenotypical homology). However, as yet there 
is no consensus as to the level (neural, computational, algorithmic) needed 
for homologies to be useful or the criteria (e.g., genetic, developmental) re-
quired to constitute evidence for homology to distinguish it, for example, from 
analogy. In addition, phenotypical features can be superfi cially similar but of 
separate evolutionary origin because they have both experienced similar selec-
tive pressure. Thus, to test rigorously for homologies or identify the form of 
specialization, it seems pertinent to gather evidence from behavior, genetics, 
development, and neurobiological mechanisms. In addition, neurobiological 
evidence should be gathered across several levels (e.g., architectonic, morpho-
logical, neurophysiological).

As pointed out by Ghanzanfar (this volume), differences and commonali-
ties between species should not only consider the brain but also the body, and 
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sensorium. For example, it was widely accepted that nonhuman primates do 
not speak due to vocal limitations in the anatomy and the confi guration of their 
vocal tract. Detailed X-ray studies of the vocal tract in nonhuman primates, 
however, led to a rejection of this hypothesis: the  vocal production apparatus 
in primates is capable of producing fi ve clearly distinguishable vowels (Fitch 
et al. 2016; Boë et al. 2017). Differences must therefore lie elsewhere and re-
main to be identifi ed. This example clearly demonstrates the need to consider 
differences at several levels to draw fi rm conclusions about whether a set of 
behaviors is similar or different across species.

We note that similar to the problems inherent to a consideration, for ex-
ample, of just the brain, there are limitations in relying on observed behavior 
alone to infer species uniqueness or, more importantly, non-uniqueness. One 
problem concerns multiple realizability. As mentioned above, superfi cial simi-
larity does not guarantee shared evolutionary origins: the same behavior in two 
species can be due to profoundly different, underlying cognitive operations 
and neural mechanisms. Even if we focus solely on human behavior, there are 
many classic cases of multiple realizations in sequence processing (Grafton 
et al. 1995; Schendan et al. 2003), visual category, and procedural learning 
(Clower and Boussaoud 2000). For example, in visual category learning, a 
subject learns through feedback whether stimuli are members of one category 
or another. Critically, a subject can draw on at least two learning mechanisms 
to develop the skill (Ashby and O’Brien 2005). Depending on the literature, 
one mechanism is referred to as  reinforcement  learning, procedural learning, 
implicit learning, model-free learning, or information integration. The other 
mechanism is referred to as rule-based, explicit, or model-based learning. Both 
mechanisms draw on different neural circuits (roughly, dopamine/striatal me-
diated and cortical) during training, and fi nal performance is dependent on 
different neural systems. Whether or not a given species will draw on each of 
these learning mechanisms is highly dependent on brain design and task com-
plexity (Smith et al. 2012a). These distinctions cannot be formed by observing 
behavioral performance in isolation. The ambiguity of multiple realizations ne-
cessitates additional evidence via task decomposition, ontological approaches, 
or neurophysiological methods as well as approaches from  artifi cial intelli-
gence (AI). This leads to a reframing of the question to one that examines 
species-specifi c means for accomplishing a given  behavior rather than one of 
uniqueness in any given species (Smith et al. 2012b).

Another challenge to consider is whether our experimental assays preclude 
us from seeing similarities between species (i.e., a Type 2 problem). Failure 
to detect relevant similarities may result from the fact that we are forcing ex-
perimental animals to execute tasks that are not part of their natural repertoire; 
if so, we would expect behavior to be optimized for their own species-typical 
learning apparatus (Krakauer et al. 2017). An alternative approach would be 
to use evolutionarily more remote species for specifi c traits that they may or 
may not share with us, rather than using monkeys (the closest available model 
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system to the human brain) as a proxy for human behavior and cognitive 
functioning. In the  language domain, we have tried to address certain aspects 
of language in apes and monkeys with limited success, specifi cally when it 
comes to higher-order  combinatorics. For instance, chimpanzees using signs 
could not combine more than two symbols for communication (Terrace et al. 
1979; Yang 2013). Importantly, there has been no systematic coevolution be-
tween monkeys and humans; monkeys have developed their own communica-
tion system, which does not possess key features of human language. There 
are species, however, that have coevolved with humans, that are under heavy 
pressure to understand human language, and which have developed  speech 
perception skills (Andics et al. 2016). Dogs, in particular, are exposed to hu-
man language from birth and yet never acquire the ability to produce speech. 
Dogs do understand human orders made by specifi c word sequences (Bloom 
2004; Kaminski et al. 2004; Pilley and Reid 2011). These types of animal 
models can serve to address questions about language processing in the hu-
man brain; for example, how much the  speech production system contributes 
to speech perception and whether combinatorial properties are specifi cally 
human. Other remote species which have not coevolved with humans, yet 
show similar levels of encephalization as apes and humans, and have had spe-
cifi c pressures (unlike apes) to communicate by the  auditory modality (e.g., 
cetaceans), may also be useful to study. Despite the absence of coevolution 
with humans, dolphins are able to understand word sequences (Herman and 
Morrel-Samuels 1995), which might mean that they also use temporally struc-
tured sequences  of abstract symbols in their own cognitive functioning. These 
highly adapted mammals rely entirely on oral communication to maintain 
contact with their offspring and hence represent yet another alternative model 
of complex oral communication.

Another alternative is to explore repertoires of  behaviors that animals exhibit 
in the wild as these may offer structural similarities to the computation under 
scrutiny. For instance, to understand whether recursivity is a feature exhibited 
in other animals, a potentially fruitful approximation of how animals establish 
hierarchies, even an atypical one (e.g., center-embedded dependencies), would 
be worth exploring. Work by Cheney and Seyfarth’s group (e.g., Bergman et 
al. 2003) shows that baboons use their knowledge of social dominance hierar-
chies to evaluate vocal exchanges between animals with different social rank. 
Other work in the visual domain suggests that human infants evaluate object 
shape and color hierarchically (Werchan et al. 2015). Paradigms such as these 
provide a glimpse into combinatorial operations that respect certain hierarchi-
cal dependencies. In nonhuman animals, hierarchical dependencies may not 
capture the full complexity of the problem (e.g., manipulations of word classes 
in relation to syntactic knowledge) but they might permit us to get at the core 
neurobiological processes that support various aspects of these operations. 
The main advantage of this approach is that it builds on sets of behaviors and 
operations for which animals have evolved, that they naturally exhibit, thus 
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taking us away from artifi cial paradigms which may constrain, and possibly 
misguide, the results that we get. One might argue that the approach somehow 
preempts the answer, as the implicit assumption is that the natural behavior 
is already a good approximation to the computation that we are trying to test 
in humans. This is not necessarily the case if one couples this approach with 
further tests that constrain the problem. For instance, one could test whether 
the neural instantiation of the specifi c operation under scrutiny is the same 
between humans and animals through neuroimaging and/or electrophysiology 
(Tsao et al. 2008; Yovel and Freiwald 2013; Schwiedrzik et al. 2015; Wilson et 
al. 2015; Kikuchi et al. 2017; Sliwa and Freiwald 2017).

Taken  together, it  seems worthwhile to reconsider how “uniqueness” 
is defi ned and how to determine whether discontinuities exist in  evolution. 
Potential pitfalls in the current research program include negligence of non-
brain aspects in the assessment of similarities and differences between animal 
models and humans as well as an overreliance on behavior alone. Finally, a 
potentially fruitful avenue is to expand the range of available model systems, 
specifi cally targeting animals that have evolved circumscribed capabilities that 
may help us understand aspects of functions, such as language, that we con-
sider uniquely human, as well as tapping onto natural behaviors that animals 
exhibit in the wild as opposed to employing artifi cial tasks as is currently done.

Notwithstanding the challenges, countless examples have already dem-
onstrated the usefulness of animal models in illuminating the human brain 
and its dysfunction: the discovery of spatial codes in rodent medial tempo-
ral structures by John O’Keefe, May-Britt Moser, and Edvard I. Moser has 
direct relevance on our understanding of human cognition (O’Keefe 1976; 
Fyhn et al. 2004); studies by Benabid and DeLong in monkeys paved the 
pathway for deep brain stimulation treatment in Parkinson patients (Benabid 
et al. 1991; Bergman et al. 1994); and the interdisciplinary work by Peter 
Dayan, Ray Dolan, and Wolfram Schultz in human and nonhuman primates 
identifi ed the neural computations for reward-related learning with implica-
tions for addiction, gambling, and clinically impaired decision making (e.g., 
Schultz 2015). Below, we explore how insights gathered from animal models 
can help us understand the human brain, and its potential unique set of cogni-
tive operations.

Repurposing the Old: From Sequences to Combinatorics

The issue of uniqueness also arises at the level of basic  neural computations. 
Is there a set of common neural  computations across species? If so, can this 
set explain aspects of human cognition that are putatively unique? Or are there 
neural codes that are themselves uniquely human?

To begin to address these questions, we take the case of language, as we 
think it offers fruitful starting points for discussion in relation to computations 
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that might be shared across species versus computations which might be an 
attribute of human cortex. Some of the best-supported evidence for neural 
codes comes from sensory domains. However, insight derived from sensory 
modalities (while relevant) does not currently offer an explanation (or even a 
satisfying clarifi cation) of the problem of linguistic representation and compu-
tation. Specifi c neural computation “for language” must be examined at a level 
of abstraction that goes beyond sensory and motor  coding, because linguistic 
representation and computation can stem from  auditory ( speech), visual ( sign 
language, text), and somatosensory information (Braille). In all these cases, the 
sensory modalities provide interface information to linguistic computations, 
which have specifi c, abstract properties. Figure 17.1 schematizes the nature 
of the problem: sequential information is processed by the sensorimotor inter-
faces (the input and output strings), but the system must be able to traffi c in 
structured representations that permit computations over representations that 
go well beyond linear strings.

To be sure, there are other aspects of  perception and  cognition that may 
capitalize on some of the operations on hierarchies that we discuss here, nota-
bly  action  planning and movement,  spatial navigation, and  visual scene analy-
sis. However, we focus on language because cross-species work is particularly 
complicated. Aspects of language that merit explanation include the property 
of discrete infi nity, ( nested) hierarchy, structure dependence, constituency, and 
the organization of the mental lexicon. To operationalize these key concepts 

Linear input sequences
auditory (speech)

Visual (sign)

Visual (text)

Tactile (Braille)

Read this now

Linearized output sequences

Auditory (speech)

Visual (sign)

Visual (text)

Tactile (Braille)

Decoding meaning based on dynamically
constructed representations
• with hierarchical structural organization
• nested dependencies
• local and long-distance relations
• structure dependent relations
• a-temporal

{HAPPY, NOT, CAT,
WRITE, GRANT, …}

Encoding compositional meaning based on 
lexical items and constructed representations

A S L

S
NP VP

NPNPDonald’s
son

likes
him

NOT VERY HAPPY

Figure 17.1 Neural computation “for language” requires abstract coding schemes. 
Sequential and linear  information processed by the sensorimotor interfaces, the input 
and output strings, must be transformed into structured, hierarchical representations, 
allowing for computations of representations that go well beyond linear strings (e.g., 
recursivity).
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and provide examples to work through the challenges, we characterize the is-
sues as follows:

1. There are terminal (basic) elements, roughly words (e.g., the word 
“lock”). Even within words, there is compositional structure: strings 
(morphemes) can be concatenated to create different words, which, in 
turn, depending on the specifi c form of concatenation, result in differ-
ent meanings due to structural ambiguity (e.g., “un-lockable” versus 
“unlock-able”).

2. Words can be combined (e.g., “red boat” or “bad example”) such that 
the resultant item inherits the properties of just one of the elements (a 
subroutine sometimes called labeling). That is, a “bad example” is a 
constituent, and this constituent bears the label “type of example” but 
not “type of bad.”

3. The concatenation of words is based on structural (syntactic) and 
meaning-based (semantic) constraints: “new plans give hope” is 
parsed into the constituents [new plans] [give hope].

4. Recursivity: In the phrase “fast red boat,” “red” modifi es “boat” and 
“fast” modifi es “red boat.” This is an example of the recursive ap-
plication of a rule, in which fi rst the modifi er A (“red”) is applied to 
object B (“boat”) to yield a new object, B′: [B′ /\ A B].

We advance the hypothesis that understanding such a generative system re-
quires breaking the problem into formal operations (computations) that com-
prise the system. Those formal operations might map onto specifi c neural 
responses that may be amenable to neural coding research. As a starting point, 
we take the taxonomy of sequential operations illustrated by Stanislas Dehaene 
(see Figure 15.1, this volume): transitions and  timing knowledge,  chunking, 
 ordinal knowledge,  algebraic patterns, and  nested tree structures.

 Evidence shows that the fi rst four levels  represent sequence construction 
operations and sequence representations that are shared with other animals; in 
contrast, current evidence points to the conjecture that  combinatorics which 
yield hierarchical nested tree structures might be a  human singularity (for 
further discussion, see Dehaene, this volume). According to this hypothesis, 
what makes human thought complex (and, perhaps, of a certain kind) is that 
symbols (in language,  mathematics, and perhaps  music, action planning/ motor 
control, and visual scene understanding) are not just strung together into a 
sequence ( string-of-beads hypothesis); they are mentally represented as hierar-
chically structured trees ( Calder-mobile hypothesis), thus offering combinato-
rial and interpretive diversity. This raises the question whether existing neural 
codes1 might be used to represent such sequences and, if so, whether they are 

1  We explicitly do not concentrate on the question of what the neural code might mean: whether 
neurons really represent an external property or not, and what the neural code could be (e.g., 
rate code, state-space trajectories).
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implemented similarly across different species. If the processing of tree struc-
tures that impose structure dependence is not shared across animals, it is still 
pertinent to determine whether neural codes have been exapted in evolution or 
created de novo for such purpose.

To get traction on the problem, we suggest reducing it to the establishment 
and representation of relations. The argumentation strategy we pursue here is 
to turn to the implementational level of description, in the sense of Marr (1982), 
looking to neurobiological properties that may motivate research on relations 
as they might be described at the algorithmic and computational levels. The 
desideratum for the language case is that the formal relation can express hier-
archical nesting. The need to represent relations is also present for many other 
domains, including visual scene analysis, action planning, and  motor control.

In vision, in particular for scene perception (and, more challengingly, scene 
understanding), relations need to be established: from exploring with our eyes 
to forming a scene representation to using it, say, to  grasp an object. This in-
cludes the representation of spatial and topological relations: a pair of glasses 
on top of the table to the left of the cup. In even the simplest kinds of motor 
action, such as picking up the glasses on the table, a relation is formed through 
the intimate  timing between the velocity of the arm as it reaches toward the 
object and the opening of the fi ngers which achieve a maximum aperture at 
a highly reproducible moment before enclosing the glasses (Paulignan et al. 
1990). At fi rst glance, this hierarchical relation is dominated by the kind of 
grasp the object requires, which regulates the arm speed. If, however, the cup 
is in the way of the glasses, then the hierarchical relation fl ips, with the limb 
trajectory dominating the timing of subsequent events. As simple and intui-
tive as these examples might seem, we do not fully understand how this is 
accomplished.

To further illustrate how considering the representation of relations in other 
domains can inform research on language, we explore here the prima facie 
similarity with  spatial navigation in more detail. In spatial navigation, relations 
need to be established from moving around to forming a map to using it to 
navigate. Navigation requires chaining operations, or a series of sequences to 
fi nd a path from A to B. Considering that superfi cial similarity, we turn to neu-
ral codes observed in the  hippocampus. As rats run through a maze or forage in 
an open fi eld, place cells in the hippocampus create a representation of the ani-
mal’s environment (O’Keefe 1976), and ensembles of place cells fi re in ordinal 
sequences that refl ect the rat’s ongoing experience (Dragoi and Buzsáki 2006). 
The hippocampal  local fi eld potential exhibits a prominent theta band (6–10 
Hz) oscillation as the rat explores and actively processes incoming information. 
Importantly, within a theta cycle, the temporal offset between sequentially fi r-
ing neurons is tightly correlated with the distance between each neuron’s place 
fi eld (Geisler et al. 2007), and these “theta sequences” incrementally advance 
across progressive theta cycles (Dragoi and Buzsáki 2006). These features of 
sequences within theta cycles allow the population of hippocampal neurons to 
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link temporally disparate events with a sequentially active ensemble. That is, 
within each theta cycle, the sequential fi ring of place cells provides a represen-
tation of the rat’s previous, current, and future location, thus providing a way to 
tile the gaps between experienced events (Buzsáki and Llinas 2017).

It is conceivable that these aspects of hippocampal activity map on to at 
least the fi rst three stages of the sequences described by Dehaene et al. (2015), 
with the sequential fi ring of place cells refl ecting the transition and timing 
of sensory experiences as the rat runs through a  maze (Stage 1), and the rep-
etition of sequences within a theta cycle refl ecting both chunking (Stage 2) 
and  ordinal knowledge (Stage 3). Interestingly, hippocampal sequences can 
be replayed forward as well as backward, and there is some evidence that the 
forward sweeps may refl ect prospective  coding whereas backward sweeps re-
fl ect retrospective coding (Diba and Buzsáki 2007), both of which are thought 
to support mechanisms of  episodic  memory. Theta sequences refl ect ordinal 
knowledge (in conjunction with specifi c item features) because the timescale 
of the sequential replay of activity within a theta cycle is independent of the 
timescale of experienced events; the sequence, for instance, maintains only the 
relative temporal order of experienced places.

The codes described in the hippocampus could serve as pointers for further 
research in cortex. We note that the role of the hippocampus in  language,  music, 
or  mathematics is poorly understood. Recent studies, however, have suggested 
that the hippocampus might play a role in language (Piai et al. 2016) as well as 
in statistical learning (Schapiro et al. 2014, 2017). The latter is thought to be a 
mechanism guiding the discoveries of words in continuous  speech (Saffran and 
Kirkham 2018). Here, the question is how babies discover, parse, segment, and 
string units for further processing in the continuous acoustic stream. Neural 
responses observed in the hippocampus (e.g., theta phase precession, replay, 
pattern completion, and/or pattern separation) may provide starting points to 
understand how primitive sequential operations are implemented in the human 
brain. Still, although these neural processes have advanced our understanding 
of sequence representation, they only represent sequences as temporal suc-
cessions of events (i.e., the  string-of-beads hypothesis described above) and 
not as fully abstract, a-temporal, hierarchical representations, such as those 
observed in language and mathematics (i.e., the  Calder-mobile hypothesis). 
Hence, further refi nement of our understanding of those codes is needed to 
explain hierarchical relations.

Other potential mechanisms for the implementation of  sequence processing 
can be considered. Below, we briefl y outline a number of possible candidates 
for the implementation of different sequential operations.

Chunking Operations

Here, two mechanisms are germane. The fi rst is implemented through 
anatomical convergence. Feature-sensitive nodes A and B converge on 

From “The Neocortex,” edited by W. Singer, T. J. Sejnowski and P. Rakic. 
Strüngmann Forum Reports, vol. 27, J. R. Lupp, series editor.  

Cambridge, MA: MIT Press. ISBN 978-0-262-04324-3



334 L. Melloni et al. 

conjunction-specifi c node C, which after appropriate adjustment of synaptic 
gain and thresholds will respond selectively to conjunctions of feature A and 
B. This strategy is commonly used in hierarchically structured feedforward 
networks, including deep convolutional networks. The  wiring can either be 
genetically determined (e.g., motion detectors) or specifi ed by experience, 
using an associative Hebbian mechanism of  synaptic  plasticity. This results 
in the implementation of a conjunction-specifi c node that refl ects frequently 
occurring statistical contingencies of features. While this mechanism is ex-
tremely robust to establish learned and stable patterns of relations, an open 
question is whether and how such a mechanism could be extended to online 
sequence construction; that is, constructing a chunk or “type” based on sparse 
data. Another question is whether a convergence site “C” is even needed. It 
could be that the convergence sites merely hold a combinatorial code linking 
information available in representations A and B, wherever they may be held 
(Damasio 1989).

The second mechanism is the formation of Hebbian assemblies, via recur-
rent activity, consisting of reciprocally coupled nodes that respond to different 
features. Again, through  Hebbian  learning, coupling connections among the 
nodes of the future assembly will be strengthened such that those nodes will be 
coupled preferentially to represent frequently co-occurring sets of features. As 
a result, if the corresponding set of features is present, the assembly represent-
ing the conjunction will be ignited. This strategy requires recurrence, a typical 
property for cortex, and because recurrency generates additional dynamics it 
can also be used to associate (chunk) more complex features, such as particular 
sequences. Thereby, hippocampal recurrent activity could help to bind items A 
and B and make their sensory cortical neural representations sparser and more 
similar (Messinger et al. 2001).

Establishment of Sequence Order

Recurrent  networks  reverberate and are self-active as well as generative. They 
have  fading  memory (stimuli leave long-lasting traces in reverberating activ-
ity) and can therefore integrate (chunk) responses evoked by sequentially pre-
sented stimuli. If a node in such a network is activated, it produces “songs,” 
(i.e., sequences of successively activated nodes), whereby the sequence de-
pends on the functional architecture of the  reciprocal coupling connections. 
As their weight distribution refl ects statistical contingencies of previous input 
(experience), the “songs” correspond to the encoding of learned sequences. 
These can then be conjoined through the merging of different assemblies, us-
ing the same mechanisms of ensemble formation. Sequence-order judgments 
appear to depend on  prefrontal cortex (Petrides 1995). Sequence-order neurons 
are seen in medial premotor cortex (Merchant et al. 2013) and the  hippocam-
pus during spatial exploration and memory tasks (Kraus et al. 2013; Aronov 
et al. 2017).
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Constructing Brackets

Brackets can be formed by different mechanisms. One possible mechanism 
is  attention that selects one (out of many possible chunks) subset and then, 
through competition and  winner-takes-all mechanisms, selects particular con-
junctions over others. If these conjunctions contain a sequence, the network 
would automatically expect (produce) the sequence with the highest transition 
probabilities between successive states. This could, in part, address represent-
ing ordinal sequencing. However, this hypothesis is only pertinent when transi-
tion probability is a critical attribute of a sequence, and this is not always true, 
as in language.

An alternative solution is to distribute the bracketing task over different 
areas. We call this anatomical factorization, whereby the mapping rules for 
convergence determine the grain of the representations. Through convergence, 
the bracket around a chunk would now be a whole object. In this case, to get 
back to the relation of the components within the bracket, one would need to 
read out the nodes within the bracket, for instance through (top-down) feed-
back. To select the correct nodes at the lower level, some mechanism needs to 
be implemented that relates them to the big chunk in the bracket. This could be 
done by synchronizing ensembles across levels (as could be necessary, e.g., for 
mental  imagery or silent speech).

Another possibility to form brackets is to use  time as coding space and 
establish  cross-frequency coupling. One could conceive slow rhythms as the 
bracket around a big chunk and the components to be represented by ensem-
bles oscillating at higher frequencies. If consistent phase relations are assured 
between the slow and fast  oscillations, it would be possible to decode which 
components belong to which of the bigger chunks within the bracket. Since 
 recurrent  networks can cope with the representation of sequences, the problem 
of ordinal coding can, in principle, be solved. Likewise, by having coupling 
across several different frequencies, nested relations can be specifi ed. Such 
approaches to cross-frequency coupling (Hyafi l et al. 2015), exemplifi ed by 
the Lisman model (Lisman and Idiart 1995; Lisman 2005), are undoubtedly 
interesting, and perhaps even relevant, for some aspects of  perception and  cog-
nition (e.g., Giraud and Poeppel 2012; Heusser et al. 2016). For this proposal, 
evidence is, however, scarce and contested.

Summary

The problem  of language,  along with the set of sequential operations that it 
entails, illustrates how investigating the way in which (sequential) relations are 
encoded in cortex and other domains may inform us about a uniquely human 
cognitive function. Successfully employing this strategy involves asking to 
what extent underlying operations are shared across domains (e.g., with spatial 
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navigation), and delineating which cognitive operations and neural codes are 
indeed unique to humans and which ones might be shared across species.

The Formal Basis of Generative Models for Language

In  the previous section, we established some key aspects of the way in which 
language is encoded, and the unique compositional architecture these codes 
must possess. Here, we consider the form of  computations, with a special fo-
cus on the cognitive operations entailed by language processing. Again, in the 
spirit of Marr (1982), it seems imperative to consider this level of description to 
guide our search for the neural implementation of cognitive functions. We will 
entertain the concept of a normative perspective (i.e., framing all computation 
under the overarching imperative to optimize, in some sense, the encoding of 
 beliefs) as an alternative framework to help understand not only the computa-
tions subserving language but also any form of computation. This optimization 
is defi ned in terms of an objective function that has various interpretations 
in terms of  information theory (i.e.,  self-information),  self-organization, and 
 self-evidencing.

Crucially, this optimization can be cast in terms of  inference (namely, op-
timizing beliefs that are parameterized or encoded by neuronal quantities) 
and brings about the concept of a generative model, which is necessary to 
defi ne the objective function. Still, the question remains: What sorts of gen-
erative models might be used by the brain to parse, synthesize, and gener-
ate language? We will focus on the distinction between generative models of 
continuous and discrete states and how they lead to different forms of opti-
mization and  message passing. This is an important distinction, as the type 
of  generative models apt for language processing rests upon  discrete states 
of the world, equipped with symbolic or semantic labels. Finally, we turn 
to the implications for cortical computation in terms of the message passing 
required for the ordinal and nested structures above. The structure of these 
models will turn out to be a key attribute that defi nes the challenges for under-
standing—and modeling—language processing in the brain. Aspects of this 
structure include the diffi cult problem of  structure  learning, the accommoda-
tion of structural dependency in linguistics, and the way we carve nature at 
the joints—via a nested factorization of the latent causes of language (and, in 
more general terms, any narrative that underlies our active engagement with 
the world “out there”).

Encoding, Decoding, and the Neuronal Code

Modern versions of  encoding (i.e., the mapping of a given stimulus onto a 
neural response) are associated with the notion  of unconscious inference. On 
this view, there is a distinction between states of the world “out there” and the 
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sensory consequences of those states that are registered by sensory epithe-
lia. Neuronal activity is taken to parameterize probabilistic beliefs over states 
of the world that are inferred through sensory impressions. If the neuronal 
code encodes beliefs about hidden or observed states of the world, what is 
computation?

One can develop a formal defi nition of  neuronal  computation in terms of 
an objective function that represents a lower bound on the evidence for a 
model and ensures the neuronal code is optimized with respect to states of 
affairs in the world. In Figure 14.2 (this volume), Karl Friston shows that 
this model is a probability distribution over the hidden states (i.e., causes) 
that generate sensory samples (i.e., consequences). Based on this model, one 
can compute the bound and specify neuronal dynamics in terms of a gradient 
descent of the ensuing objective function. This has a number of fundamental 
implications. First, it means that it should be possible, in principle, to specify 
neuronal dynamics in terms of  self-evidencing ( active  inference) under some 
generative model. This implies that phenotyping a particular brain or creature 
boils down to specifying the generative model being used to navigate in their 
world. Under this view, emphasis is placed on understanding the form and 
nature of the generative model. Everything else should ideally follow from 
this model.

The second key observation is that any (probabilistic) generative model can 
be expressed as a Bayesian graph with nodes and edges. This is a simple con-
struct that associates all hidden states (and sensations and actions) with nodes 
of a network, where the connections or edges denote conditional dependencies. 
The key point is that the form of the generative model defi nes, unambiguously, 
the requisite message passing among the nodes that constitute the gradient 
descent or neuronal dynamics. In other words, knowing the form of the genera-
tive mode means that we immediately know the computational or  functional 
architecture of the brain, under the assumption that it is optimizing its beliefs 
about its world.

Thus, from basic principles we can arrive at a formal (if abstract) descrip-
tion of a brain that must be describable in terms of  message passing among the 
nodes of a graph or network. Furthermore, in virtue of the causal structure in 
the world, the edges or connections will have a particular sparsity form (e.g., 
hierarchical structure). This means that we would expect to see self-evidencing 
computations play out on a relatively sparse (e.g., hierarchical) neuronal net-
work. This resonates with the known neuroanatomy and neurophysiology of 
brains (Felleman and Van Essen 1991), which have this peculiar graphical 
structure, and could be contrasted with other organs such as the liver or blood. 
So what attributes might the generative model have?

At this point, we may consider the distinction between generative models 
of discrete and continuous states. This is a simple yet critical distinction based 
on the event space or support of the probability distributions (or densities). 
We can have states of the world that are categorical. In other words, we can 
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be in one room or another room, but not both rooms at once. Our beliefs then 
would be a categorical distribution over a fi nite set of states. Alternatively, 
states can be continuous. The analogous probability density over some con-
tinuous state (e.g., the luminance contrast at a particular point in the visual 
fi eld) yields variables ranging from 0 to infi nity. The corresponding prob-
ability density may have some (e.g., lognormal) distribution depending on 
the uncertainty about the actual level of luminance contrast. In terms of the 
neuronal code, this means that if we adopt  discrete state space models, one 
might associate neuronal (population) activity with the probability of being 
in a particular state at any particular time. Conversely, in  continuous state 
space models, neuronal activity may encode the expectation or average of the 
probability distribution and scale with the intensity or level of the continuous 
hidden state (e.g., luminance contrast). In both cases, the gradient descent to 
understand neuronal dynamics applies. However, the nature of these dynam-
ics depends sensitively on whether our generative model is over discrete or 
continuous states.

Continuous state space models would call upon some form of Bayesian 
fi ltering to implement gradient descent when sensory input fl uctuates over 
time. Common examples of these  belief updating schemes include  predic-
tive  coding,  Kalman-Bucy fi ltering, particle fi ltering, unscented fi ltering, and 
their hierarchical (and nonlinear) variants. Analogous schemes for discrete 
state space models include  belief propagation and  variational message pass-
ing. Variational message passing corresponds to the solutions to the neuronal 
dynamics that explicitly optimize variational free energy. Crucially, these are 
not fi ltering or predictive coding schemes; although they share many compu-
tational aspects.

Perhaps the most important aspect is that all belief updating schemes entail 
reciprocal message passing over the edges of the Bayesian graph. This has 
a fundamental implication for cortical  computation. It means that reciprocal 
neuronal connectivity must (either directly or indirectly) be in play, if the brain 
engages in  Bayesian belief updating. This is a strong constraint on neuronal dy-
namics, which mandates recurrent connectivity and reciprocal message passing 
between any neurons or neuronal populations that constitute suffi cient statis-
tics of conditional or posterior beliefs. A popular example here can be found in 
predictive coding: in this particular message passing scheme,  prediction errors 
are passed forward (e.g., in cortical hierarchies), while descending predictions 
are reciprocated in the other direction. Exactly the same reciprocal or recurrent 
exchange is found in belief propagation and variational message passing.

Under this view the fundamentals of  computational architectures in the 
brain rest upon the following:

• Adopt a constructivist perspective on neuronal computations so that 
neuronal activity encodes beliefs about something; namely, states of 
the world that generate sensations.
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• Specify the structure of a generative model, which specifi es the graphi-
cal form; that is, network architecture of reciprocal message passing or 
Bayesian belief updating.

• Formulate this message passing in terms of differential equations to 
specify the precise architecture and form of neuronal dynamics.

How would this recipe for understanding cortical computation, in terms of 
belief updating, play out in the context of higher cognitive functions such as 
language?

Deep Generative Models for Language

We have tried to reduce the problem of understanding cortical computation to 
understanding the structure of generative models that explain how sensations 
are caused. We have posited that particular structures of generative models are 
necessary for language and detailed fi ve structural aspects implicit to the gen-
eration of language, ranging from the ability to generate transitions among dis-
crete states to the hierarchal nesting or parsing of tree structures. Furthermore, 
language has to deal with structural dependency, which could involve ordinal 
transposition and a particular form of parsing best understood in terms of hier-
archical trees and their attendant decompositions.

From this arise two key implications for generative models that underlie 
neuronal dynamics in language processing. First, we are dealing with  discrete 
state space models (e.g., hidden  Markov models, Markov decision processes, 
hierarchal Dirichlet process models and their extensions), which immediately 
tells us that representations (i.e., expectations) about states of the world in 
the future (and past) are needed to support sequential transitions. Second, we 
need a hierarchical structure that allows for  chunking and chaining within a 
particular (ordinal) temporal frame of reference. The requisite of deep tempo-
ral models  brings with it some interesting functionality, along with some deep 
problems.

The capacity to represent sequences over time means that variational mes-
sage passing builds, in effect, beliefs about the future (and the past). For ex-
ample, reading the fi rst word in a sentence already sets up a hypothesis space 
over all subsequent words, in virtue of message passing forward in time (and 
back again). This reciprocal message passing has, in part, a forward and back-
ward aspect, in the sense that there is an explicit representation of the future. 
From a computational or cognitive perspective, it means that we have the ca-
pacity to hold in mind possible outcomes that are plausible given the sequential 
evidence sampled so far. Perhaps more interestingly, it also means that we 
can update our beliefs about initial experiences in the past. This provides an 
important opportunity to test hypotheses generated under these sorts of genera-
tive models, using prospective and retrospective inference, and to respond to 
unexpected evidence (i.e., violations at different levels of abstraction).
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Simulating the variational message passing (under deep temporal models 
of this kind) exposes many issues related to the neurophysiological correlates 
of language processing. Perhaps the most interesting is the synchronous and 
asynchronous updating implied by discrete models. This necessarily involves 
the separation of timescales: a fast timescale for the optimization process it-
self and a slower timescale for sampling each new discrete sensory sample 
(e.g., through saccadic eye movements while  reading or articulation of pho-
nemes while talking). This discrete sampling of the world may progress at 
a theta frequency, while fast updating probably occurs with time constants 
associated with faster, for example, gamma frequencies (Melloni et al. 2009; 
Wang 2010; Giraud and Poeppel 2012). Furthermore, the hierarchal structure 
of these models necessarily entails a separation of temporal scales at different 
levels (e.g., delay period activity in the prefrontal cortex, in relation to fast 
dynamics lower in the  auditory system). Empirically, this suggests a nesting 
of faster frequencies in slower frequencies, when belief updating is observed 
electrophysiologically with, necessarily,  cross-frequency coupling and nested 
oscillations.

What are the special problems that accompany this sort of deep temporal 
model? These relate to the very structure or carving of this (linguistic) nature 
at its joints. The relational aspect of linguistic constructs (i.e., hidden causes 
or states) introduces a special problem that is probably best conceived of as a 
combinatorial explosion (e.g., discrete infi nity). So what does this mean for the 
structure of the generative model?

One can fi nesse the  complexity cost implicit in a combinatorial explosion 
by factorizing the generative model into conditionally independent causes and 
then binding these causes together, through convergent connectivity, to explain 
the particular pattern of sensory inputs at hand. A detour to vision may serve 
to clarify this point: an effi cient way to address combinations of features (e.g., 
what and where) of an object in the visual fi eld (i.e., low complexity encoding) 
would be to represent the nature (what) and location (where) attributes sepa-
rately, then use the interaction or conjunction of these posterior expectations 
to predict the sensory input that would be sampled at any particular location in 
the visual fi eld (Friston and Buzsáki 2016). This interaction between (roughly) 
orthogonal representational factors (i.e., a computational binding) entails sec-
ond-order or multiplicative interactions between messages from the what and 
where parts of the generative model (e.g., the what and where pathways in 
the brain). In turn, this necessitates some form of modulatory or nonlinear 
optimization of synaptic effi cacy of the sort associated with attentional selec-
tion mediated through dynamical mechanisms, as in communication through 
 coherence (Fries 2005) or other neuromodulatory mechanisms. Thus, one im-
portant constraint of this view is that factorization implies multiplicative inter-
actions when factorized features are combined.

What sort of factorization is in play in language? As indicated above, this 
factorization may be extremely complicated and must be hierarchically nested. 
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It might appear that certain syntactical structures are separated, by virtue of 
being associated with hidden factors from the actual semantic or phonologi-
cal content. Furthermore, one has to consider the ordinal structure-dependent 
aspects of language. This speaks to the interesting possibility that we represent 
order or ordinal attributes in the same way that we represent locations in space. 
Put simply, there may be dedicated streams for encoding when that are com-
bined with other factors encoding what at each level of hierarchal construction 
(Auksztulewicz et al. 2018). This is not unrelated to the notion of ordinal point-
ers involving convergent interactions between cortical language areas and the 
hippocampus (Friston and Buzsáki 2016).

At this point, one could start to speculate about the nested hierarchal and 
factorial form of generative models that would be fi t for purpose in generat-
ing language. Perhaps, the most diffi cult problem in understanding the cortical 
computations that underlie language processing might not be in the details of 
the message passing or the biophysical implementation of the algorithms, but 
in understanding the very structure of the generative model and how this is ac-
quired by a brain. This is known as  structure  learning or Bayesian model selec-
tion. These considerations emphasize the basic structure of generative models 
that possess the right sort of symmetry (i.e., invariances in conditional indepen-
dencies) implicit in the right sort of carving or factorization. At present, simple 
symmetries have proven very effective in  machine  learning. Perhaps the most 
celebrated example of this is the weight sharing implicit in deep convolutional 
neuronal networks. This employs a simple factorization or invariance assump-
tion that the weights of lateral connections at each level of the deep network 
are conditionally independent of their translational position. For the above ar-
guments, we may be pressed to look for much more sophisticated symmetries 
that underlie our ability to parse and decompose invariance, when generating 
narratives in a world populated by creatures like us (who talk a lot). Let us now 
take a closer look at this issue from the perspective of neuroscience and AI.

Every Happy Marriage Has Its Ups and Downs:
 Neuroscience and AI

Apart  from studying the brains of humans and other animals, a complemen-
tary inroad into understanding the computations that underpin human cogni-
tion may lie in silico. Comparatively recent advances in computer algorithms 
and hardware have led to a massive increase in the capacity of computers to 
fulfi ll tasks at human or even superhuman performance levels in domains such 
as the recognition of images, letters, or  speech (LeCun et al. 2015) to playing 
computer games (Mnih et al. 2015) or even Go (Silver et al. 2016). At the fore-
front of these advances are  deep neural  networks (DNN); that is, hierarchical 
stacks of convolutional neural networks. Because their performance in certain 
domains is so close to or even better than that of humans and can be built at 
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will, DNNs seem to be promising tools to understand something more about 
human capacities. Especially in the domain of visual object recognition, DNNs 
now readily perform at the same level as humans or monkeys; interestingly, the 
properties of units in the higher layers of these networks show similar proper-
ties as neurons at the highest stages of object processing in monkey infero-
temporal cortex (Yamins et al. 2014). This example suggests that there could 
be a fruitful, bidirectional exchange between AI and neurobiology to improve 
algorithms and to advance our understanding of the brain.

However, there are inherent differences between DNNs and human brains/
behavior that are worth considering. For example, in terms of behavior: (a) 
deep learning algorithms need massive amounts of labeled training data (and 
regularization, etc.), whereas humans learn quickly and often in an unsuper-
vised fashion; (b) DNNs typically learn specifi c tasks (e.g., recognizing cats) 
and generalize poorly to other, even similar tasks; (c) they do not have “com-
mon sense” and the domain of transfer learning is only emerging (Davis and 
Marcus 2015). In terms of biology, DNNs have many, sometimes hundreds 
of layers—more than the brain (e.g., the visual system is thought to consist 
of about 30 areas)—making it seem impossible to fi t this number of layers 
into a skull. Furthermore, DNNs often rely on processing in massive data 
centers; running them on a small, autonomous device such as a phone imme-
diately drains the battery. This serves to illustrate that brains and algorithms 
have evolved under different environmental pressures. Other long-standing 
arguments are that the  backpropagation algorithms used to train DNNs are 
deemed biologically implausible (Crick 1989), although  backpropagating ac-
tion potentials and backward spread of plasticity have since been discovered 
(Fitzsimonds et al. 1997; Tao et al. 2000; Du et al. 2009). In addition, DNNs 
usually do not involve recurrent and long-range connections, which are char-
acteristic of the cortex. Overall, this suggests that much remains to be accom-
plished before we can build machines that think and learn like humans (Lake 
et al. 2017). Still, comparing commonalities and differences between in vivo 
and in silico approaches to intelligence may be similarly fruitful as compari-
sons between species. What have new AI tools contributed to theories about 
human brain function? What do we learn about the brain by applying machine 
learning to neural data?

Much of AI today builds on  neural networks models that were developed in 
the 1980s to understand features of human cognition based on aspects of what 
was known at the time about neural computations (e.g., multilayer structure, 
proximal connectivity). Hence, it may not be too surprising to fi nd similarities 
between well-studied aspects of the neural processing and the way DNNs pro-
cess data. One could thus argue that there is a fundamental circularity that we, 
neuroscientists, should remain aware of as we use these tools. These models 
were originally supposed to help us generate new testable hypotheses. Since 
these models were able to solve some (simple) computational operations, they 
have been reused for engineering purposes and refi ned to optimize machine 
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performance, no longer considering neurophysiological plausibility. This prag-
matic and laudable use of neuronal networks or other brain-like algorithms 
may become problematic when we start applying them to “model” or “ana-
lyze” the brain. The constraints these models impose and the hypotheses they 
imply become implicit, and ignoring them might profoundly mislead us. For 
example, the apparent solution of using multiple layers to address data  com-
plexity may not be the (only) solution the brain uses to solve the same problem. 
Alternatively, using multiple layers may, at a certain level of abstraction, sim-
ply be a different formulation of the same solution the brain is also believed to 
use (Liao and Poggio 2016).

Although they are  increasingly being used as analysis tools in neurosci-
ence, what do machine learning techniques actually tell us about the brain? 
Research on animals and in humans with brain lesions has taught us that 
we need to know what is necessary as well as what is suffi cient (Bouton et 
al. 2018). In animals, we get this information by considering both loss and 
gain in function studies. As this cannot be done in humans, computational 
approaches may help to address this question, building networks/models and 
perturbing them to try to fi nd out what is necessary and suffi cient for people to 
do a task. As discussed, the specifi c case of language is particularly challeng-
ing. To test whether some of the predictions regarding how humans process 
language are plausible, therefore, we have to build a model and then show 
that the predictions it makes, regarding neural responses to novel stimuli, are 
accurate. If successful, the model will have captured some of what actually 
happens in the human brain. In recent work, Pereira et al. (2018) developed a 
 decoding model based on a limited amount of training data and showed that 
it can infer the meaning of new words, phrases, or sentences from patterns 
of brain activation. To do this, they described a high-dimensional semantic 
space and used a representative sample from this semantic space. If this is 
indeed how the brain represents such relationships, then a decoder trained 
in this way should be able to generalize from a relatively small training set 
to new concepts/relationships (as these are all dimensions of the semantic 
space). Pereira et al. were able to show that their decoder, trained only on 
a limited set of individual word meanings, can use this strategy to decode 
meanings of sentences in this way. These representations allow the decoder 
to distinguish between semantically similar sentences as well as to capture 
the similarity structure of inter-sentence  semantic relationships. Thus, it may 
be a method by which the brain itself carries out these computations. This 
illustrates how such a method can be used to generate new hypotheses for 
neuroscientists to test in the actual brain, much along the lines for which 
these models were originally developed.

Another example of how machine learning paradigms could be used 
to tell us something about the brain lies in their ability to rescue function, 
again something that previously has mainly been shown in animals. For in-
stance, Ezzyat et al. (2018) have shown that one can use a closed-loop system 
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to decode intracranially recorded neural activity from humans while they 
were learning lists of words, and then to implant artifi cially memories into 
lateral temporal cortex based on the patterns the machine learning algorithm 
extracted. Specifi cally, the system learned patterns associated with both suc-
cessful encoding/recall and unsuccessful encoding/forgetting. Once the system 
had learned, the algorithm could then test whether or not this information was 
suffi cient to induce  memory: when it detected a pattern associated with forget-
ting, it stimulated the patients’ brain to induce memory. Measured in terms 
of behavioral outcomes (i.e., words remembered), Ezzyat et al. showed that 
lateral temporal cortex—the site of stimulation—is suffi cient to induce recall 
in humans.

Taken together, AI seems to offer both promises and pitfalls for neurosci-
ence. Trying to understand what a DNN does comes with its own caveats. 
Clearly, neuroscientists should not naively apply DNNs for model build-
ing or analysis without considering the design principles of these networks. 
Nevertheless, reverse engineering neural networks that can solve tasks at hu-
man-level performance may provide a unique opportunity to grasp algorithmic 
and computational aspects of human intelligent behavior. As such,  artifi cial 
neural  networks should perhaps be treated like another species and not like a 
one-to-one model of the human brain. Finally, neuroscience should continue to 
build models that are solely made of a biological plausible set of submodels/
routines, agnostic to neuroengineering tools, and provide biologically plau-
sible options for engineering new algorithms.

Desiderata for the Future

We end our discussion  by considering desiderata for future studies with a focus 
on pressing opportunities for further discoveries:

1. Understanding the coding of relations: The  coding of relations between 
objects is a common theme across domains: vision, motor control, 
 spatial navigation, cognitive/semantic maps, language, etc. How rela-
tions are coded on the fl y for fl exible and purposeful behavior remains, 
however, one of the next frontiers of knowledge. At the same time, 
whether similar or different mechanisms are repurposed for the encod-
ing of relations across domains is unknown. Future studies will hope-
fully be able to close this gap in our understanding of a fundamental 
brain operation.

2. Development of mesoscopic measurements: Human neuroscience 
studies rest upon noninvasive, macroscopic measurements (e.g., fMRI, 
MEG, EEG) that are detached from the detailed microscopic measure-
ments found in animal models. The wonderful assortment of (mo-
lecular) tools used in rodents and increasingly in nonhuman primates 
to understand mechanistically cortical circuitry and operations (and, 
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where possible, their causal relevance for behavior) cannot be used 
in humans, preempting a mechanistic understanding of the same pro-
cesses and principles at the same level directly in the human brain. The 
development of measurement technologies at the mesoscopic scale that 
are safe and minimally invasive (e.g., multicontact recording arrays) 
may help bridge some gaps between human and  animal studies and 
are needed more than ever. Progress in understanding the human brain 
may be fundamentally impeded without the development of such tools.

3. Ecological validity of behaviors in the laboratory versus in the wild: We 
question whether the experimental designs/tasks currently being used 
in much of neuroscience inappropriately constrain the type of answers 
that one might get. Specifi cally, how can we be certain that animals 
do or do not exhibit a specifi c behavior? Reductionist experimental 
paradigms, the reward schedules used to motivate animals to perform, 
as well as other variables may provide us with misguided answers sim-
ply because they do not tap into behaviors that an animal is equipped 
to produce. A possible alternative would be to access behaviors that 
intrinsically motivate animals to perform and exhibit specifi c behav-
iors. For example, we ask whether nonhuman primates would exhibit 
primitive forms of  combinatorics when encouraged to teach conspecif-
ics. Another venue for exploration would be to study  behaviors in the 
wild, as those relate to the specifi c needs of the animals for survival. 
Inherently related to this question is whether training animals to per-
form human-like behaviors is informative or misleading our efforts to 
understand whether behavior across animals is similar or different.

4. Targeted and explicit interspecies comparisons: Darwin’s idea that 
differences between species are a matter of gradation permeates most 
of the scientifi c practice. It is implicitly assumed that mechanisms 
will translate across species once we understand the evolutionary 
changes that have occurred. In practice, parallel strains of studies on 
rodents, nonhuman primates, and humans are often conducted with-
out an adequate exchange or engagement between groups to permit 
explicit interspecies comparisons. Of course, such comparisons come 
with challenges. As discussed,  homologies and analogies need to be 
carefully delineated using multimodal evidence; a focus on only one 
aspect of the organism (e.g., only brain structure) without considering 
other relevant factors (e.g., mechanics of the body, genetics, develop-
ment) can be misleading. Especially when insights from preclinical 
animal studies (e.g., on psychiatric or neurological diseases) are to be 
translated to humans, evolutionary factors need to be more explicitly 
considered; this could rescue a human treatment doomed for failure 
because of a key evolutionary change that occurred after the split from 
a common ancestor to murine species. For many neuroscience ques-
tions, technologies that allow explicit interspecies comparisons are 
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already available (e.g., comparative fMRI and intracranial recordings) 
and should be increasingly used for that purpose.

5. Illumination of canonical principles in minds and machines through 
 AI: Perhaps we did not recognize how hard the problem of visual rec-
ognition was until we tried to build a machine that could do it. Thus, 
an attempt at building a machine (AI) that could exhibit comparable 
behaviors to those of the human brain may be a fruitful approach to un-
derstand basic principles of human cognition. Such a research program 
entails using computational models tested on increasingly exquisite sets 
of behaviors to decide, among the family of models, which model best 
approximates human behavior. Principles extracted from those models 
could be used as hypotheses for further cognitive experiments, to help 
guide additional insight into the computations performed. In parallel, 
efforts should be made to relate properties of the computational models 
explicitly to neural architecture, and the other way around (e.g., Nayebi 
et al. 2018). This is certainly not an easy task, and whether efforts will 
be successful remains to be determined.

These are exciting times in neuroscience. Over thirty years have passed since 
the seminal  Dahlem Workshop on the neurobiology of neocortex (Rakic and 
Singer 1988). Although we are far from a full understanding of brain function 
and how it enables cognition, we are optimistic that the next thirty years will 
bring important insights. The right ingredients are there: a rapid pace in the 
development of neurotechnologies for studying the brain, a fl ourishing fi eld in 
AI, the capacity to build algorithms that match human behavior, and a scien-
tifi c community that is willing to rethink how cross-species comparisons are 
used to understand what the cerebral cortex does, how it evolved to do so, and 
how it can afford high-level cognition. Together, this holds promise in helping 
us understand how the cerebral cortex and its rich set of connections operates, 
and how this makes us human.
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