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Complexity and 
Computation in the Brain

The Knowns and the Known Unknowns

Karl J. Friston

Abstract

This chapter sets the scene for the treatment of complexity and computation in hu-
man  cognition and discusses how this treatment is informed by the neurobiological 
and functional properties of the cerebral cortex. Its agenda is to establish some guiding 
principles that may help identify hypotheses and computational architectures that go 
beyond mere descriptions of how the cortex underwrites the repertoire of functions 
we enjoy, such as  action,  perception, cognition, affect, and  consciousness. In short, 
it explores the computational imperatives that form the basis for human experience. 
 Complexity and  computation are considered, as is how they organize our approach to 
neuronal dynamics. Criteria are identifi ed that any tenable theoretical framework must 
respect. In addition, it discusses computational theories that can be entertained, and the 
degree to which they account for empirical data from anatomy and neurophysiology. 
Finally, some of the deeper issues that face sentient artifacts are considered that, ulti-
mately, possess a sense of self, purpose, and agency.

Introduction

The purpose of this chapter is to review the fundaments of complexity and 
computation in the brain and provide some pointers that frame other contribu-
tions in this volume. It may seem an almost impossible task to survey all the is-
sues that attend action, perception, cognition, and consciousness in the human 
brain; however, there are some relatively straightforward principles that make 
our job much easier. We will pursue the basic theme of complexity and com-
putation, considering carefully what these notions entail. This paves the way 
for a broad ontology of theories that can be separated into normative theories 
of what the brain is doing and process theories of how the brain implements 
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normative imperatives. This separation is useful because it divides the concep-
tual (what) from the empirical (how) labor, and allows us to specify clearly the 
pressing questions that need to be answered.

This chapter comprises four sections. In the fi rst, we will consider the na-
ture of complexity, from the point of view of dynamical systems and  self-
organization, as well as from the perspective of  inference and statistics. This 
section leaves us with an outstanding issue: How does dynamical complexity 
relate to  structural complexity and vice versa? The second section turns to the 
notion of computation and the principles that could shed light on computation 
in the brain. In brief, we will consider computation from the point of view of 
inference and how this can be grounded to give a physics of computation that 
can be meaningfully applied to neuronal systems. The third section looks at 
prevalent normative theories of brain function with a special focus on cur-
rently dominant paradigms, such as  predictive  coding, the Bayesian brain, and 
 active inference. We review these approaches in the light of preceding discus-
sions on complexity and computation. Having addressed the normative side 
of the challenge, we then consider the more challenging issues of identifying 
process theories that are consistent with the principles of computation and en-
dorsed by our growing knowledge of cortical and subcortical networks in the 
brain. This discussion is organized around two scales: large-scale connectomes 
and hierarchical architectures in the brain, which contextualize smaller-scale 
processing (e.g., the canonical cortical microcircuit). In the fi nal section, out-
standing issues are raised that largely turn on the remarkable capacity for hu-
man retrospection and epistemic  planning. This, in turn, presents some key 
questions about the timing of representations and the representations of time. 
It is at this point that some of the known unknowns start to rear their heads. In 
other words, this chapter ceases to be a review of what we know and becomes 
a prospectus for future discussion and work.

Complexity in the Brain

The origin of the word complexity derives from the Latin word com (mean-
ing together) and plex (meaning woven). A complex system is therefore char-
acterized by its dependencies and interactions, where characteristic, complex 
behavior emerges. This emergence is sometimes taken to mean that there are 
no high-order instructions or principles that prescribe the interactions—inter-
actions that are generally considered to be “greater than the sum of their parts.” 
However, as we will see later, this is probably not true. Complexity is itself a 
complex issue, famously refl ected in the fact that there is no single defi nition of 
complexity. Having said this, in the physical sciences, there are several formal 
measures of  complexity, depending upon the fi eld of application.

Some common examples include computational complexity, usually 
cast in terms of minimum description lengths that allow people to classify 
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computational problems by complexity class (e.g., P, NP). This is closely relat-
ed to  Kolmogorov  complexity and  minimum message length in algorithmic in-
formation theory (Hinton and Zemel 1993; MacKay 1995; Wallace and Dowe 
1999). These are important measures that relate closely to statistical complex-
ity which will play a key role later (Hinton and van Camp 1993). In statistical 
mechanics and probability theory, complexity is sometimes associated with 
the notion of  entropy; however, this is a slightly naive assumption and misses 
the point that complexity is really about relationships (i.e., the dependency of 
entropy over different partitions), such as hierarchical entropy measures over 
 time or the complexity measures that underpin integrated information theory 
(Tononi et al. 1994). This sort of complexity speaks to the complicated statisti-
cal dependencies among the states of the system in question. We will refer to 
this as  structural complexity to distinguish it from the  dynamical  complexity 
that emerges from a system’s dynamics.

In dynamical systems there are many forms of complicated (Latin: com 
meaning together and plicare meaning to fold) behaviors that rest upon attrac-
tor manifolds that are literally folded into some mathematical phase or state 
space. Three common sorts of complexity in dynamical systems theory are 
reviewed in Table 14.1. In brief, dynamical complexity usually entails an un-
predictable space-fi lling trajectory that, paradoxically, has an attractor of low 
measure or volume. To unpack these technical terms, what we are saying here 
is that if one measures a complex dynamical system and plots its states, as in 
state space over time, the resulting trajectory traces out a path on an attractor 
or manifold. The peculiar thing about complex systems is that this manifold 
or attracting set reaches many corners of state space and yet has a very small 
volume. This is what is meant by “space-fi lling with low measure.” Essentially, 
this means that complex systems have attracting sets of states which they visit 
time and time again; however, their paths through state space are convoluted 
and unpredictable (in the sense of deterministic chaos or other forms of itin-
erancy). Furthermore, the attracting states ensure that the system will only be 
found in a very small number of states, compared with the possible states in 
which it could be found. In many senses, nearly every system we encounter in 
daily life is an example of a complex system, ranging from the weather through 
the behavior of our children to nearly every aspect of our exchanges with the 
world (e.g., our eye movements). A key feature of complex dynamics is their 
wandering or itinerant aspect.

The importance of itinerancy for brain  function has been articulated many 
times (Nara 2003), particularly from the perspective of computation and auton-
omy (van Leeuwen 2008). Itinerancy provides a link between exploration and 
foraging in ethology (Ishii et al. 2002) as well as dynamical systems theory ap-
proaches to the brain (Freeman 1994). These approaches variously emphasize 
the importance of  chaotic itinerancy (Tsuda 2001) and self-organized critical-
ity (Bak et al. 1988; Kitzbichler et al. 2009; Deco and Jirsa 2012). Itinerant dy-
namics also arise from metastability (Jirsa et al. 1994) and underlie important 
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phenomena, like  winnerless competition (Rabinovich et al. 2008). For a de-
scription of these phenomena, see Table 14.1.

Table 14.1 Phenomena that underlie dynamical complexity.

Phenomenon Description

Chaotic itinerancy Chaotic itinerancy refers to the behavior of complicated (usually 
coupled nonlinear) systems that possess weakly attracting sets, 
Milnor attractors, with basins of attraction that are very close to 
each other. Their proximity destabilizes the Milnor attractors to cre-
ate attractor ruins, which allow the system to leave one attractor 
and explore another, even in the absence of noise. A Milnor attrac-
tor is a chaotic attractor—onto which the system settles from a set 
of initial conditions—with positive measure (volume). However, 
another set of initial conditions (also with positive measure) that 
belongs to the basin of another attractor can be infi nitely close; this 
is called attractor riddling. Itinerant orbits typically arise from un-
stable periodic orbits that reside in (are dense within) the attrac-
tor, where the heteroclines of unstable orbits typically connect to 
another attractor, or they wander out into state space and then back 
onto the attractor, giving rise to bubbling. In other words, unstable 
manifolds from saddles (i.e., fi xed points attracting in one direc-
tion and repelling in another) densely embedded in the attractors 
become stable manifolds and connect different attractors. This is a 
classic scenario for intermittency in which the dynamics are charac-
terized by long  laminar (ordered) periods as the system approaches 
a Milnor attractor and brief turbulent phases, when it gets close to 
an unstable manifold. If the number of periodic orbits is large, then 
this can happen indefi nitely. The term ergodic is used to describe a 
dynamical system that has the same behavior averaged over time as 
averaged over its states. The celebrated ergodic theorem (Birkhoff 
1931) addresses the behavior of systems that have been evolving 
for a long time: intuitively, an ergodic system forgets its initial 
states, such that the probability that a system is found in any state 
becomes—for almost every state—the proportion of time that this 
state is occupied.

Heteroclinic 
cycling

In heteroclinic cycling there are no attractors, not even Milnor ones 
(or at least there is a large open set in state space with no attractors); 
there are only saddles connected one to the other by heteroclinic 
orbits. A saddle is a point (invariant set) that has both attracting 
(stable) and repelling (unstable) manifolds. A heteroclinic cycle is 
a topological circle of saddles connected by heteroclinic orbits. If a 
heteroclinic cycle is asymptotically stable, the system spends lon-
ger and longer in a neighborhood of successive saddles, producing 
a peripatetic wandering through state space. The resulting hetero-
clinic cycles have been proposed as a metaphor for neuronal dy-
namics that underlie cognitive processing  (Rabinovich et al. 2012) 
and exhibit important behaviors such as winnerless competition, of 
the sort seen in central pattern generators in the motor system.
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We have focused on dynamical complexity using concepts that are usually 
applied to autonomous dynamical systems; that is, systems with dynamics that 
do not depend upon any independent (i.e., control) variable from outside the 
system (including time itself). Clearly, to drill down on any particular neuronal 
system, especially the cortex, we need to acknowledge that it will respond 
sensitively to outside infl uences (and may well show  time-dependent effects, 
such as adaptation). In light of this, it might be important to consider non-
autonomous dynamical systems, an emerging branch of applied mathematics 
(Kloeden and Rasmussen 2011), its application in the fi eld of  recurrent neuro-
nal  networks (Ørstavik and Stark 1998), as well as the analysis of interactive 
nonautonomous dynamical systems (Schumacher et al. 2012) and  causality 
(Schumacher et al. 2015). The infl uence of coupled (and therefore nonauto-
nomous) dynamical systems on each other, via the emergence of things like 
generalized  synchrony may have a fundamental role in coordinating neuronal 
dynamics (Hunt et al. 1997; Schumacher et al. 2012; Friston and Frith 2015), 
as we will see below.

Measures of Complexity

The title of this section is actually quite loaded. Thus far we have not yet de-
fi ned complexity; we have just described ways in which it is manifest or can be 
measured. This is an important distinction because the measurable characteris-
tics of a phenomenon do not, necessarily afford teleological insight. We know 
that the brain is complex at many levels. Neuronal dynamics are itinerant, 
show  self-organized criticality and metastability (Deco and Jirsa 2012; Cocchi 
et al. 2017). Furthermore, the dynamic coordination implied by a universe of 

Phenomenon Description

Multistability and 
switching

In multistability, there are typically a number of classical attrac-
tors which are stronger than Milnor attractors in the sense that 
their basins of attraction not only have positive measure but are 
also open sets. These attractors are not connected; they are sepa-
rated by a basin boundary. However, they are weak in the sense 
that the basins are shallow (and topologically simple). System noise 
is then required to drive the system from one attractor to another; 
this is called switching. Noise plays an obligate role in switch-
ing but is not a prerequisite for heteroclinic cycling; noise acts to 
settle the excursion time around the cycle onto some characteristic 
timescale. Without noise, the system will gradually slow as it gets 
closer and closer (but never onto) the cycle. In chaotic itinerancy, 
the role of noise is determined by the geometry of the instabili-
ties. Multistability underlies much of the work on attractor network 
models of perceptual decisions and categorization; for example, in 
binocular rivalry (Theodoni et al. 2011).

Table 14.1 (continued)
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biological and neuronal rhythms lends the brain a repertoire of complex dy-
namics and attracting sets that are possibly unparalleled in the universe (Singer 
and Gray 1995; von der Malsburg et al. 2010). But does this help us understand 
how the brain works? To harness complexity in a functionalist or teleological 
sense, it is useful to consider another form of complexity that is closely related 
to the algorithmic and computational complexity described above.

Statistical Complexity

In statistics and probability theory, complexity has a very particular mean-
ing. It essentially measures the degrees of freedom of a (statistical or math-
ematical) description of some phenomena or data. These degrees of freedom 
are technically measured with something like the  Kullback-Leibler (KL) di-
vergence between the posterior and prior probability distributions over the 
causes of data. To unpack this, we must fi rst assume that the world in which 
we operate is a world of probability distributions and beliefs. Generally, these 
are distributions over the causes of data or sensory samples; namely, states 
of the world “out there.” Once we describe things in terms of beliefs, we 
can then evaluate the change in beliefs induced by a measurement or sensory 
sample. This change is scored by the KL divergence between the posterior 
belief—after seeing the data or making a measurement—relative to the prior 
belief—before seeing the data.

In this setting,  beliefs are just shorthand for probability distributions of the 
sort found in Bayesian statistics, or indeed quantum mechanics. This sort of 
complexity is an attribute of a belief, model, or hypothesis about the causes of 
outcomes or measures. This may seem a rather colloquial and restrictive sort 
of complexity; however, it has a much broader scope of application than one 
might initially guess. This follows from the fact that nearly all interesting phys-
ics (and daily life) reduces to some form of  inference or measurement. In fact, 
from the point of view of quantum mechanics right through to general rela-
tivity, everything can be reduced to metrology or measurement (Cook 1994). 
In relation to algorithmic complexity, this means the imperative for effi cient 
communication, decoding, modeling, or hypothesis testing is to minimize com-
plexity; in other words, to account for the causes of our sensory interactions 
with the universe in terms of short messages of minimum complexity (Wallace 
and Dowe 1999; Schmidhuber 2010). This is nothing more than Ockham’s 
principle.

Putting the Complexities Together

This brief consideration of complexity poses a rather obvious dialectic. If all 
the principles of algorithmic and information complexity require complex-
ity to be minimized—for example, the principle of maximum effi ciency, the 
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principle of minimum redundancy, and so on (Barlow 1961; Optican and 
Richmond 1987; Linsker 1990)—why is the world so replete with systems 
that  have clear dynamical complexity? We will leave this as a question to be 
resolved. In fact, any worthy theory of brain  function should be able to resolve 
this dialectic. Before turning to candidate theories, let us now consider the 
ground rules for computation.

Computation in Humans and Other Animals

Originally, computers  were people who made calculations during the Industrial 
Revolution (Latin: com meaning together and putare meaning thinking, or 
reckoning). This is important because computing was, and always has been, 
a competence of humans, even if the modern perspective on computation fo-
cuses on artifi cial (in silico) computation. Nowadays, computation is nearly 
synonymous with computer science; namely, any type of calculation that fol-
lows a well-defi ned model that can be articulated as an algorithm or scheme. 
But does this defi nition really help us?

Let us take a step back and think about what it means to compute or infer. 
On this view, one can think of computing in terms of deduction, induction, 
and abduction.1 In relation to the model that underlies a well-defi ned computa-
tion, this translates into inferring the causes or meaning of some measurements 
or data through deductive, inductive, or abductive algorithms or reasoning. 
Most computer science treatments of computation would fall under the class 
of deductive or inductive (Turing style) computations. From the perspective of 
complexity and computation in the brain, this sort of computation is relatively 
uninteresting (because it is predicated on propositional logic, as opposed to 
dynamics and probability theory). We will therefore assume that the sort of 
computation that characterizes complex self-organizing systems is abductive 
in nature (e.g., the implicit algorithms we see playing out in meteorology, natu-
ral selection, and human perception). So what is abduction?

Loosely speaking,  abduction can be thought of as inference to the best expla-
nation. It is characteristically ampliative, in the sense that it often goes beyond 
the evidence or measurements at hand. In other words, it describes algorithms 
that appear to bring more to the table than is intrinsic to the computer’s in-
puts. From a mathematical or statistical perspective, the closest algorithm we 
have to describe this form of computation is  Bayesian  belief updating, which 
calls on prior beliefs to contextualize the likelihood of sensory observations. 
This enables posterior beliefs to be formed that are an optimal assimilation of 

1 Generally defi ned, deduction is “the deriving of a conclusion by reasoning,” whereas induction 
refers specifi cally to “inference of a generalized conclusion from particular instances.” Abduc-
tion is defi ned as “a syllogism in which the major premise is evident but the minor premise and 
therefore the conclusion only probable.” The crucial distinction is that unlike deduction and 
induction, abduction is inherently probabilistic.
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current evidence (computational inputs) into past experience (prior beliefs). 
This may seem to be another colloquial formulation of computation; however, 
it is diffi cult to think of any complex self-organizing system that cannot be cast 
in terms of probabilistic or  Bayesian  updating. Figure 14.1 provides an ex-
ample of  self-assembly and morphogenesis based purely on system dynamics 
that implicitly perform an elementary form of inference. This inclusive view of 
computation can be applied to evolution, motor control, and, perhaps, human 
experience itself (Ao 2009; Harper 2011; Frank 2012).

Figure 14.1 illustrates  self-organization through (subpersonal) computation, 
based on minimizing variational free energy (an information theoretic quantity 
that measures the surprise or implausibility of some sensed data, given a model 
of how those data were generated). This simulation shows how simulated (col-
ored) cells can self-organize into a particular form simply by computing and 
minimizing  free energy: the target morphology is shown in the insert on the 
bottom right. Each time step  in this simulation can be thought of as modeling 
the migration and differentiation of eight cells over several minutes. Upper 
panels show the time courses of system states encoding cell identity (left), the 
associated system states mediating migration and signal expression (middle), 
and the resulting trajectories, projected onto the fi rst (vertical) direction and 
color-coded to show differentiation. These trajectories progressively minimize 
free energy (lower left panel), resulting in a differentiation of the ensemble 
(lower middle panel): the softmax function of the cells’ internal states can be 
interpreted as the posterior  beliefs; each cell (column) occupies a particular 
place in the ensemble (rows); white denotes a probability of one. The lower 
right panel shows the ensuing confi guration: the trajectory is shown in small 
circles for each time step; the insert corresponds to the target confi guration.

To the extent that one subscribes to this formulation of computation, it of-
fers a useful and incontrovertible defi nition: computation can be defi ned as any 
process that increases model evidence. Model evidence will be a key concept 
in what follows and appears in many guises throughout the physical and life 
sciences. In brief, model evidence is the probability of some data or sensory 
state of a system, given the system in question. Conceptually, it is useful to 
treat a system and a model as synonymous. This allows one to think of any 
system as performing some computation on measurements of—or sensory ex-
changes with—its world. It is this model that lends computation its defi ning 
attribute. Examples of model evidence include the wave function in quantum 
mechanics, whose squared amplitude corresponds to the probability of a par-
ticular state given the quantum system or model in question (Ballentine 1970). 
In statistical mechanics, the negative log evidence becomes a thermodynamic 
(Gibbs) energy or potential (Ao 2008; Seifert 2012). In statistics per se, model 
evidence is also known as marginal likelihood (Beal 2003). In  information the-
ory, negative log evidence is known as  self-information (Jones 1979); namely, 
the surprise (or surprisal) induced by an unlikely outcome. This defi nition is 
important because it means that the average of (negative log) model evidence 
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is  entropy. In turn, this means that any self-organizing system that resists the 
second law of thermodynamics is implicitly minimizing its informational and 
thermodynamic  self-information on a moment-to-moment basis (Nicolis and 
Prigogine 1977; Friston 2013). Equivalently, interesting self-organizing sys-
tems with complex (and complicated) attracting sets must therefore maximize 
model evidence. So if we defi ne computation as the maximization of model 
evidence, what does this tell us about the complexity of computation?

Complexity and Computation

This is where the statistical and algorithmic defi nitions of complexity come 
into play. Put simply, model evidence can always be expressed as accuracy 
minus complexity. In other words, the evidence associated with some sensory 
input is just the difference between accuracy (the expected log probability of 
sensations, given a model of how they were caused) and complexity (the  KL 
divergence between posterior and prior beliefs encoded by the model or system 
in question). On this view, we can regard self-organization in complex systems 
as internal responses to external perturbations; namely, sensory inputs. This 
means that one can associate the internal states of a system with  belief states 
about what is causing or generating its sensory impressions on “the outside.” 
This outside could be a heat bath in statistical thermodynamics (Seifert 2012) 
or the sensorium in human perception (Still et al. 2012). See Figure 14.2 for 
an illustration of how complexity minimization underlies  action perception in 
the human brain.

Now let us take another look at the imperative that underlies computation. 
If computation necessarily increases model evidence, it must therefore entail 
a decrease in complexity. This is consistent with the minimum message length 
and algorithmic complexity reduction associated with maximum effi ciency 
and Ockham’s principle (Barlow 1974; Hinton and Zemel 1993; Wallace and 
Dowe 1999). Indeed, some people believe that all self-organization and adap-
tive behavior  can be described in terms of minimizing complexity in one way 
or another (Schmidhuber 2006, 2010). This brief consideration of computation 
from the point of view of inference poses two fundamental challenges for any 
 theory of brain function:

• How can we formulate neuronal computations that underlie action,  per-
ception,  cognition, and  consciousness to increase model evidence and 
the implicitly minimize complexity?

• How does the minimization of algorithmic complexity explain the 
emergence of dynamical complexity in sentient, self-organizing sys-
tems such as the brain?

To address these challenges, we now consider several global brain theories and 
see how they fare.
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Normative and Process Theories of Computation in the Brain

This section fl eshes  out the important distinction between normative and  pro-
cess theories that could be entertained in the neurosciences, with a special 
focus on the imperatives for complexity and computation described above. 
How might one approach theoretical frameworks for computation in the brain? 
Perhaps the easiest thing to do is to distinguish between theories or principles 
that describe what the brain does from process theories that describe how the 
brain does something. We will refer to these as normative (or state) and process 
theories, respectively.

The free-energy principle
Sensory states

(perception)

Markov blanketExternal
states

Internal
states

Environment
Active states

(action)

Action to minimize a bound on surprise Perception to optimize the bound
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Figure 14.2 Bayesian computation in the brain. Upper panel: Schematic of the 
quantities that defi ne a system and its coupling to the world. These quantities include 
the internal states of a system μ (e.g., a brain) and quantities describing exchange 
with the world; namely, sensory input s = g (η, a) + ω and action a that changes the 
way the environment is sampled. The environment is described by equations of mo-
tion, η̇  = f (η, a) + ω, which specify the dynamics of (hidden) states of the world, η. 
Here, ω denotes random fl uctuations. Internal states and  action both change to minimize 
free energy or self-information, which is a function of sensory input and a probabilistic 
belief q(η : μ) encoded by the internal states. Lower panel: Alternative expressions for 
 free energy illustrating what its minimization entails. For action, free energy (i.e., self- 
information) can only be suppressed by increasing the accuracy of sensory data (i.e., 
selectively sampling data that are predicted). Conversely, optimizing internal states 
make the representation an approximate conditional density on the causes of sensory 
input (by minimizing KL divergence). This optimization makes the free energy bound 
to self- information tighter and enables action to avoid surprising sensations.
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The perspective in this section borrows heavily from the physical sciences, 
where it is almost self-evident that to understand any system—from the sys-
tems of quantum mechanics through to the canonical ensembles of statistical 
thermodynamics—it is necessary to specify the system’s Lyapunov function. 
The notion of a single (Lyapunov) function that can describe the entire be-
havior of any system—indeed the universe—may seem fantastical; however, 
nearly all physics ultimately falls back on some form of  Lyapunov function. 
Put simply, one can describe any (random) dynamical system—whether it 
is complex, self-organizing, or not—in terms of a set of (random) differen-
tial equations (Tomé 2006; Ao 2008; Seifert 2012). Furthermore, the fl ow or 
changes in the state of the system at any point in state space (i.e., for any given 
state) can be completely described by a (Lyapunov) function of those states.

Common examples here include the Lagrangian of gauge theories (e.g., 
general relativity) (Capozziello and De Laurentis 2011; Sengupta et al. 2016), 
the Hamiltonian of classical mechanics, the thermodynamic free energies of 
statistical mechanics, and the Schrödinger Hamiltonian of quantum mechanics 
(Ballentine 1970; Seifert 2012). All of these quantities are essentially the same 
thing and just score the improbability of occupying a particular state, such that 
the fl ow of the system will tend to vacate regimes of state space in which it 
is not typically found (i.e., which do not constitute parts of its attracting set). 
The physical analogies here are not terribly important. The important point is 
that a complete description of any system can be obtained if we understand 
what the system is doing in terms of the Lyapunov function it is continuously 
trying to minimize. The insight here is that we can describe any complex self-
organizing system (including the brain) in terms of an apparent  optimization. 
This is because—in virtue of decreasing its Lyapunov function—the brain will 
appear to be optimizing the Lyapunov function. So what is the Lyapunov func-
tion for the brain? The answer is exactly the same answer for any system: the 
self-information or negative log evidence.

There is a long and technical (and very interesting) back story to this asser-
tion; however, we will simply accept this to be the case and recognize some 
common instances of the implicit  self-evidencing implied by this formulation. 
First, self-evidencing, as the label suggests, implies that systems like the brain 
are in the game of maximizing the Bayesian model evidence for their models 
of the sensorium (Hohwy 2016). This is nothing more or less than the  Bayesian 
brain hypothesis cast in terms of a state or normative theory (Ballard et al. 
1983; Knill and Pouget 2004; Yuille and Kersten 2006). This has a long history 
dating back to the students of Plato, through Kant and Helmholtz (Helmholtz 
1866/1962) to modern-day formulations in terms of  perception as hypoth-
esis testing and variational formulations, such as the  free-energy principle 
and  active  inference (Gregory 1980; Hinton and Zemel 1993; Dayan et al. 
1995; Friston 2010). Implicit optimization also subsumes dominant theories 
in psychology (e.g.,  reinforcement  learning) and in economics (e.g.,  expected 
utility theory). In both reinforcement learning and expected utility theory, the 
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underlying premise is that there is some reward, cost, value, or expected utility 
function that behavior is trying to realize. In  active  inference, this function is 
the expected model evidence over (prior) preferences about outcomes in the 
future (Friston et al. 2015b; Mirza et al. 2016). I will return to this later; for the 
moment, let us fi rst see whether this account meets the challenges posed above.

Algorithmic and Statistical Complexity: The Dialectic Resolved

If  self-evidencing minimizes the complexity of our (generative)  models of the 
world (Hohwy 2016), how does this explain the dynamical complexity of neu-
ronal activity? It turns out that the answer is relatively straightforward. The 
explanation here has two parts: the fi rst dynamical and the second structural. 
In terms of  dynamical  complexity, minimizing self-information or maximiz-
ing log evidence necessarily engenders  self-organized criticality and the three 
mechanisms that underpin dynamical complexity (see Table 14.1). The reason 
is subtle but intuitive. If any system is trying to minimize its self-information, 
we can think of the system as tracing out a trajectory on a (self-information) 
function over its state space. For example, imagine a steel ball rolling over a 
curved surface, always searching for the lowest points. It can be seen immedi-
ately that the states which the system visits will repeatedly correspond to the 
(local) minima of the (self-information) surface, thereby creating an attracting 
set. Clearly, because the number of points that constitute a minimum is far less 
than the total number of points in state space, this attracting set will have low 
measure or volume. Now, here comes the clever bit. Because the curvature 
of this surface determines the precision or confi dence of posterior beliefs, its 
curvature determines complexity. In other words, if the ball represents some 
neuronal population fi ring rate that is trapped in a very narrow ravine of the 
(self-information) surface, the system can be very confi dent about where it 
is located. Statistically, this is refl ected in things like Fisher information and 
information geometry (Amari 1998). The important thing here is that as the 
curvature of self-information increases, the difference between the posterior 
and prior increases, and the complexity increases. This means that, by defi ni-
tion, regions of state space with low self-information must be relatively fl at 
(much like river estuaries are broader than the hanging valleys from which 
their tributaries emerge). The fl at aspect of these attracting minima means that 
the ball can roll around the local minima in any unconstrained, slowly oscil-
lating or meandering fashion. These critical slowing and long-range fl uctua-
tions are the hallmark of self-organized criticality (Bak et al. 1988; Shin and 
Kim 2006). Furthermore, because the sites of the self-information minima are 
relatively shallow, this affords the opportunity to jump from local minima to 
local minima, thereby affording a mathematical image of metastability and 
other forms of critical dynamics (see Table 14.1 and Figure 14.3). We will see 
later that precision is itself a quantity that is optimized by the brain, and this 
 optimization may be what we call  attention. This lends attention an interesting 
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Figure 14.3 Self-organized criticality and computation: (a) The average probability, 
following stimulus onset, of correctly identifying a song over 64 values of precision on 
the motion of hidden attractor states. The two vertical lines correspond to the onset and 
offset of nontrivial categorization—a softmax probability of greater than 0.05. The varia-
tion in these average probabilities is due to the latency of the perceptual switch to the 
correct song. This can be seen in (b), which shows the principal conditional  Lyapunov 
exponent (CLE) in image format as a function of peristimulus time (columns) and preci-
sion (rows). It can be seen that the principal CLE shows fl uctuations in, and only in, the 
regime of veridical categorization. Crucially, these fl uctuations appear earlier when the 
categorization probabilities were higher, indicating the prevalence of short latency per-
ceptual switches. Time-averaged  free energy is shown in (c) as a function of precision. 
As one might anticipate, this exhibits a clear minimum around the level of precision that 
produces the best perceptual categorization. In (d), a very clear critical slowing is shown 
in, and only in, the regime of correct categorization. In short, these results are consis-
tent with the conjecture that free-energy minimization can induce instability and thereby 
provide a more responsive representation of hidden states in the world. Adapted from 
Friston et al. (2012), to which the reader is referred for further details.
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interpretation; namely, it might be the psychological homologue of self-orga-
nized criticality that allows us to engage selectively with the sensory world in 
both space and  time (Coull and Nobre 1998; Feldman and Friston 2010).

In short, the very mathematical  structure of computation in a Bayesian or 
abductive sense necessarily entails self-organized criticality and fl uctuations 
of the sort that characterizes dynamical complexity. But what about  structural 
complexity and the form of neuronal architectures (e.g., connectivity)?

Generative Models and Structural Complexity

In the search for accurate and minimally complex models of the sensorium, 
the best solution is  generally to recapitulate the causal or statistical structure of 
the world “out there,” within the system (e.g., the brain). In short, the best path 
to self-evidence is to have a veridical and parsimonious model of the world 
in which you are  navigating. This is an old insight fi rst articulated formally in 
synergetics in terms of the good regulator theorem (Conant and Ashby 1970; 
Seth and Friston 2015); namely, any system that can regulate its environment 
must possess a model of that environment. This tells us something very inter-
esting. It means that minimizing  complexity—while maintaining an accurate 
explanation or prediction of sensory inputs—will cause statistical regularities 
and causal structure in the world to be transcribed into the system’s internal 
architecture. If one pursues this argument, then we have a natural explanation 
for the fi nely crafted and interwoven connectivity in our brains that has all the 
hallmarks of complexity (Friston and Buzsáki 2016). This is simply a restora-
tion of the sparse, deep, or hierarchical structure of the world “out there,” gen-
erating sensory impressions. In short, if we live in a complex and complicated 
world, the minimization of complexity—in the algorithmic sense—not only 
enforces self-organized criticality and dynamical complexity, it also mandates 
a structural complexity that mirrors the world. For some, these may be pleasing 
accounts of complexity and computation in the brain. So is this the end of the 
story? Clearly not, it is only the beginning. Having a state or normative theory 
is certainly very useful; however, it says nothing about the process theories that 
actually explain neuronal computations.

Process Theories

Clearly, there  are many theories about neuronal processing that appeal to a 
greater or lesser extent to normative theories. Happily, the dominant theory—
 predictive  coding—subsumes most available process theories. Predictive cod-
ing is not a normative theory; it is a particular algorithm or process theory 
that has attracted a lot of attention over the past decades in explaining many 
aspects of neuronal anatomy, physiology, psychophysics, and, more recently, 
motor control (Srinivasan et al. 1982; Rao and Ballard 1999; Friston 2011b). 
In brief, predictive coding was originally formulated for compressing large 
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fi les, based on the minimum description length notions above (Elias 1955). 
In the neurosciences, it now represents the most developed and established 
process theory for hierarchical  message passing in the brain (Mumford 1992; 
Bastos et al. 2012). Predictive coding is just an algorithm or scheme that mini-
mizes  self-information or maximizes model evidence by updating internal 
states (i.e., representations) in the light of sensory evidence. It is distinguished 
from other formulations by calling on auxiliary variables termed  prediction 
errors. Prediction errors are simply the difference between sensory inputs (or 
intermediate representations at hierarchical levels in  hierarchical predictive 
coding) and predictions of those inputs based on internal representations or 
expectations. In the brain, predictive coding is usually described as reciprocal 
message passing among the levels of the cortical and subcortical hierarchy 
(Friston 2010). The recurrent aspect of this message passing is important and 
fundamentally asymmetric. In other words, top-down or descending messages 
convey predictions of expectations in the level below (or sensory input per se), 
whereas ascending or bottom-up signals communicate newsworthy prediction 
errors that update expectations, thereby improving predictions and resolving 
prediction errors throughout the hierarchy.

In engineering, the  Kalman fi lter (a special linear case of Bayesian fi lter-
ing) is the formal homologue of predictive coding. Predictive coding in its 
generalized form also provides a nice metaphor for several other important 
schemes used for data assimilation and uncertainty quantifi cation; for exam-
ple,  reservoir computing and  deep learning (Schmidhuber 2006; Hinton 2007; 
Tenenbaum et al. 2011; Salakhutdinov et al. 2013; LeCun et al. 2015). To un-
derstand this, we have to distinguish between inference and learning. In this 
chapter,  inference corresponds to the estimation of (time-varying) causes in the 
world that are generating sensations, whereas  learning corresponds to accumu-
lating experience in the service of updating (time-invariant) model parameters 
that underwrite inference. Happily, when we put prediction errors into the al-
gorithmic mix, things like  backpropagation of  error can be implemented using 
 Hebbian or associative plasticity. Furthermore, schemes like reservoir com-
puting and  liquid state machines (Maass et al. 2002; Buonomano and Maass 
2009) can also be considered as variants of predictive coding; for a discussion 
of how reservoir computing can self-organize to improve predictive coding, 
see Toutounji and Pipa (2014). The twist here is that instead of optimizing the 
parameters that enable predictive coding schemes to make better predictions, 
parameters mapping from a reservoir of dynamics are optimized to select the 
best prediction of temporally fl uctuating inputs, or some supervised output. 
This sort of scheme (based on recurrent neural networks) has found a particu-
larly powerful application in  neurorobotics, reproducing many lifelike behav-
iors (Tani 2003; Tani et al. 2004).

Generalized predictive coding schemes also provide a nice vehicle for 
many other issues that attend the dynamic coordination of message passing in 
the brain (von der Malsburg et al. 2010). A key example here is the  encoding 
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of uncertainty through the precision or gain afforded by prediction errors. 
Technically, this corresponds to the  Kalman gain or precision in Bayesian fi l-
tering formulations of evidence accumulation or assimilation (Clark 2013). 
Physiologically, there are a host of important mechanisms that may coordinate 
the implicit gain control of prediction errors. These range from the control 
of classical modulatory neurotransmitter systems through to  excitation–inhibi-
tion balance in the coupling between superfi cial pyramidal cells and inhibitory 
interneurons (Yu and Dayan 2005). This is a particularly fascinating area that 
has clear correlates (of selective evidence accumulation) in terms of fast syn-
chronized neuronal oscillations, which may be a crucial aspect of gating and 
communication in perceptual synthesis (Singer and Gray 1995; Fries 2005; 
Womelsdorf et al. 2007; Giraud and Poeppel 2012).

 Oscillatory dynamics may also be a key player in process theories of for-
ward and backward  message passing in hierarchical predictive coding. The 
implicit mathematical structure of this message passing suggests that faster 
fl uctuations in prediction errors may be communicated by high frequencies, 
whereas lower frequencies may convey descending connections (Bastos et al. 
2012, 2015). If true, this puts the nonlinear integration of units encoding ex-
pectations and prediction errors within the same  cortical column center stage 
in cortical computations (Kopell et al. 2011; Lee et al. 2013a).

The Functional Anatomy of Predictive Coding

So how does predictive coding fare as a process theory in relation to anatomy 
and physiology? Its explanatory scope is impressive. For example, it provides 
a principled explanation for the functional asymmetries between ascending 
and descending (forward and backward) extrinsic (between-area) connections 
in cortical hierarchies (Mesulam 1998; Hilgetag et al. 2000). These functional 
asymmetries entail the spectral asymmetries in neuronal oscillations above and 
established dissociations between driving (forward) and modulatory (back-
ward) synaptic effects (Sherman and Guillery 1998, 2011; Bastos et al. 2012). 
Variants on different proposals for the integration of hierarchical or centrifu-
gal patterns of extrinsic connections have emerged over the past few decades, 
starting with the seminal work of David Munford (1992) on the computational 
architecture of the neocortex. This work has been refi ned and embellished 
over the years, leading to detailed descriptions of canonical microcircuits for 
predictive coding that identify computational roles for individual cell types 
(Bastos et al. 2012; Shipp 2016); see also Figure 14.4, where the equations in 
the left panel provide a mathematical form for predictive coding and empha-
size the key role of precision (see above) in coordinating and contextualizing 
the impact  of prediction errors on belief updating. As noted above, the way 
that precision enters into  belief  updating in these schemes suggests a close link 
between optimizing precision and  attention. In other words, some of the com-
plexity associated with neuronal dynamics rests upon self-organized coupling, 
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which may entail synchronous gain (Singer and Gray 1995; Fries et al. 2001b, 
2008; Fries 2005; Bauer et al. 2006, 2014; Womelsdorf et al. 2007; Bendixen 
et al. 2012; Auksztulewicz and Friston 2015; Wildegger et al. 2017).

So, if predictive coding appears to capture so much of the brain’s computa-
tional anatomy, do we have a complete picture (at least at a mesoscopic scale) 
of computation in the human brain? I would submit that we probably do not. In 
the fi nal section, let us thus turn to some of the deeper challenges that consti-
tute the focus of much current research.

Beyond Predictive Coding

There are many reasons to suppose that  predictive coding in and of itself is 
an incomplete  process theory for neuronal computations. The most obvious 
shortcoming is its failure to account properly for  action,  planning, or inten-
tions (Bernier et al. 2017). This problem can be fi nessed, in part, by appeal 
to  active  inference which, essentially, equips predictive coding schemes with 
classical refl exes (Friston et al. 2015b). This renders motor control a problem 
of predicting the proprioceptive consequences of action and speaks to purpose-
ful behavior in terms of planning and inference (Attias 2003; Botvinick and 
Toussaint 2012; Mirza et al. 2016). This is an important extension of predictive 
processing and hierarchical  Bayesian inference in the brain; however, it may 
raise more issues than it resolves. We will briefl y consider a few of these key 
issues which are considered in other chapters in this volume. We start with 
some basic aspects of  generative models that underlie purpose and selfhood 
and then consider some of their implications for neuronal dynamics.

Temporal Thickness and Counterfactual Depth

Current trends in machine learning may be taken as a pointer for developments 
in computational neuroscience, exemplifi ed by the success of deep convolution 
networks and  deep learning (LeCun et al. 2015). This direction, however, is 
probably not fi t for purpose for several reasons. First, deep learning and associ-
ated  reinforcement  learning paradigms do not address  inference. In other words, 
although data is accumulated in the service of optimizing connection strengths, 
the problem of how hidden states of the world are inferred online (i.e., data as-
similation) is, most often, not in the remit of  machine  learning. This speaks to 
the fact that there are usually no dynamics involved in the classifi cation prob-
lems addressed in machine learning. In other words, the problem of recognizing 
static images of handwritten digits is very different to the problem of anticipat-
ing the intention and motor behavior of somebody writing digits by hand.

Second, current machine learning approaches using  deep neural  networks 
do not usually consider the  encoding of uncertainty and, more importantly, 
epistemic value and intrinsic motivation (Ryan and Deci 1985; Oudeyer and 
Kaplan 2007; Schmidhuber 2010; Friston et al. 2015b). In other words, if the 
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brain is in the game of minimizing (expected)  self-information, it is techni-
call y trying to minimize uncertainty. This follows because the time average 
of self-information is  entropy (Jones 1979). The minimization of uncertainty 
through explorative behavior or epistemic foraging is probably one of the most 
important imperatives for neuronal computation; thus, it has to be an integral 
part of any normative theory. Unfortunately, most machine learning algorithms 
do not accommodate this, leading to ad hoc ways of resolving the exploita-
tion–exploration dilemma (Cohen et al. 2007). In contrast, to understand fully 
how the brain recognizes and acts upon cues with epistemic affordance, we 
need to have a clear understanding of how the brain models the future, even in 
simple tasks like  reading (Figure 14.5). Reading is particularly interesting be-
cause it speaks to the assimilation of sensory evidence at multiple hierarchical 
or deep temporal scales (Poeppel et al. 2008), while at the same time calling 
upon effi cient foraging of the visual scene for salient information (Hassabis 
and Maguire 2007; Mirza et al. 2016). This also brings us to the notion of 
mnemonics and counterfactual depth which underlie purposeful and possibly 
mindful behavior (Palmer et al. 2015; Seth 2015).
Deep Temporal Models

If we choose  our behaviors based upon a model of the world, then that model 
must entertain the consequences of action in the future. Furthermore, this fu-
ture must be  encoded at different temporal scales. This is literally a deep and 
intriguing problem that has clear implications for the form of generative mod-
els embodied by neuronal connections and neurophysiology. Again,  language 
and reading provide excellent opportunities to understand how narratives are 
synthesized in the brain and contextualize our active sampling of the senso-
rium (Barlow 1974; Beim Graben et al. 2008; Poeppel et al. 2008; Giraud and 
Poeppel 2012; Dehaene et al. 2015; Konig and Buffalo 2016). There are some 
fascinating issues when it comes  to the details of the underlying process theo-
ries (O’Keefe and Recce 1993; Buzsáki et al. 2013; Murray et al. 2014; Friston 
and Buzsáki 2016):

• How do we select models?
• How do we integrate the assimilation of sensory evidence over differ-

ent timescales?
• Do we have a moving temporal frame of reference?
• Are there separate spatial and temporal representations (Dehaene et al. 

2015), or do we represent dynamic  spatiotemporal trajectories?
• How do we contextualize our evidence accumulation and action 

selection?
• Do we have separate perceptual and motor representations or are these 

fundamentally integrated within generative models of the sensed world 
(Grafton and Hamilton 2007; Bernier et al. 2017; Cogan et al. 2017)?
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• How does coevolution  make the job of predicting the sensed world 
easier? Indeed, how do we take turns in predicting each other (see 
Ghazanfar and Takahashi 2014)?

“flee, wait, feed &
wait”
“wait, wait, wait &
feed”
“wait, flee, wait & feed”
“flee, wait, feed & flee”
“wait, wait, wait & flee”
“wait, flee, wait & flee”
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(d)

Presaccadic delay period
activity in prefrontal cortex

Presaccadic field potentials
during active vision

50s/s

1 s

V2
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Figure 14.5 Simulated electrophysiological responses during  reading: this fi gure il-
lustrates the sort of Bayesian  belief updating that underlies reading. Neuronal dynamics 
are shown in terms of expectations about hidden states of a deep model (i.e., a model 
with hierarchical depth) generating words from sentences and pictograms from words. 
The upper panels show expectations are shown at the higher (a) and lower (b) hierar-
chical levels in raster format, where an expectation of one corresponds to black (i.e., 
the fi ring rate activity corresponds to image intensity). The horizontal axis is time over 
a reading trial, where each iteration corresponds roughly to 16 ms. The vertical axis 
corresponds to six sentences at the higher level and three words at the lower level. The 
resulting patterns of fi ring rate over time show a marked resemblance to delay period 
activity in the  prefrontal cortex prior to saccades. Saccade onsets are shown by the verti-
cal (cyan) lines. The inset on the upper right is based upon the empirical results reported 
in Funahashi (2014). The transients in (c) are the simulated fi ring rates in the upper 
panels fi ltered between 4 Hz and 32 Hz, and can be regarded as (band pass fi ltered) fl uc-
tuations in depolarization. These simulated  local fi eld potentials are again remarkably 
similar to empirical responses. The examples shown in the inset are based on the study 
of perisaccadic electrophysiological responses during activation reported in Purpura et 
al. (2003). The upper traces come from early  visual cortex (V2), while the lower traces 
come from inferotemporal cortex (TE). Eye movement trajectories produced in this 
simulation of  active  inference are shown in (d). Adapted from Friston et al. (2017b), to 
which the reader is referred for further details.
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• To what extent does our ability to predict rely upon neuromodulatory 
mechanisms, such as dopamine and noradrenaline, or indeed a level of 
 consciousness (Strauss et al. 2015)?

• What is the role of brain  oscillations (Mayer et al. 2016), such as theta-
gamma coupling, between the  prefrontal cortex and  hippocampus?

These questions are particularly prescient in the context of  predictive  coding and 
 language processing (see Arnal and Giraud 2012; Giraud and Poeppel 2012).

A clear utility of deep temporal models is the ability to understand neuro-
nal dynamics in terms of  message passing and  belief  updating. In other words, 
this formulation provides an explicit account of computations that are “about 
something.” This top-down approach, starting from the generative model and 
then unpacking the requisite dynamics, can be contrasted with bottom-up ap-
proaches, such as  deep learning, and the use of  recurrent or unfolded  networks 
that aspire to the same kind of functionality. However, these “black box” ap-
proaches do not necessarily admit the same level of algorithmic or functional 
interpretability. For a taxonomy of computational architectures that speaks to 
the recurrent neural networks used in  machine  learning and predictive coding-
like schemes, based upon generative models, see Harris et al. (this volume).

Finally, it should be noted that the metaphor offered by predictive coding 
is only appropriate when dealing with  continuous state spaces in continuous 
 time. While this is perfectly fi ne for luminance contrast and perhaps visual 
motion as well as the detailed kinematics of muscle movements, it may be the 
wrong sort of parameterization for the lived world. In other words, our inten-
tions, concepts, and sense of self usually come along as (sequences of) discrete 
or categorical states (see Dehaene et al. 2015; Wilson et al. 2017). Technically, 
these questions call for a completely different set of neuronal computations 
that inherit some similarities from predictive coding but are quintessentially 
different in their form. This is not a problem; indeed, it speaks to the known 
unknowns that can guide empirical research. For example, there are very par-
ticular predictions based on the  belief propagation under discrete models (e.g., 
Markov decision processes) in comparison to continuous models (e.g., the 
state space models of predictive coding). There is clearly no right or wrong 
answer in terms of process theories, which means that empirical data will, 
ultimately, be in a position to adjudicate among the different hypotheses. To do 
this, however, one must be able to specify the dynamics and implicit coordina-
tion implied by various process theories. This is the challenge.

Conclusion

In summary, we have taken the basic nature of complexity and computation to 
consider the constraints on state or normative theories of brain computation, 
with a special focus on  self-evidencing and  inference as the most promising 
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formulation. From this, a number of different process theories—illustrated 
here with predictive coding—inform, or are informed by, empirical study and 
highlight the known unknowns in neuroscience. Further questions remain to be 
addressed regarding subconscious and conscious inference, minimal selfhood, 
interoceptive inference, emotions, and related areas in philosophy. Many ideas 
are emerging under the notion of the self-organizing and  self-evidencing brain 
that promise to enrich this enquiry.
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