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Coding in Large-Scale 
Cortical Populations
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Abstract

Theories of  information  coding in cortical populations have been put forth for many 
years, but only recently have experimental methods become available to permit simul-
taneous recordings from hundreds of neurons, thus allowing these theories to be tested. 
This chapter discusses some of the more prominent theories and argues that they fall 
along a spectrum of coding schemes, ranging from population codes that are built up 
from single-neuron tuning functions to codes that emerge from the collective dynam-
ics of cortical populations. At the extremes, these theories are incompatible: one relies 
on single neurons whereas the other ingrains coarse neuronal activity into low-dimen-
sional trajectories that summarize the covariance of activity across multiple neurons. 
It is proposed that both can be reconciled using a hierarchical coding scheme where 
relevant information is represented at the level of large-scale  spatiotemporal patterns, 
and both individual neurons and the temporal interrelationships convey information. 
Antecedents to this contemporary theory can be seen in Donald  Hebb’s  assembly phase 
sequences (Hebb 1949): information is encoded at the single-neuron level in terms of 
tuning functions, but spatiotemporal patterning of individual neurons provides context 
to interpret the population code fully. Moreover, the encoding perspective proposed 
here explicitly incorporates the synaptic implementation of the code, thus strengthening 
the postulate.

Introduction

Thanks to the ongoing development of technologies, such as multielectrode 
arrays and optical imaging, it has become increasingly routine to record 
simultaneously from hundreds, and soon even thousands, of neurons in 
awake-behaving animals. From this perspective, we begin by arguing why 
the cortex needs to use a population scheme to encode sensory, cognitive, and 
motor information. We then proceed to describe different population schemes 
and argue that it is necessary to understand how as well as what is encoded 
in the population to fully delineate the nature of the cortical population 
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code: How is the code implemented mechanistically from a cellular and 
synaptic perspective? What is being represented, and for which purpose, at 
any moment in time by the active cortical neuronal population? From an 
encoding perspective, the issues of how, what, and for which purpose must 
be established to permit a complete theory. From a decoding perspective, it 
is possible to black box the how and for which purpose and instead establish 
only what is being encoded.

 Population coding schemes can be considered on a spectrum of neural rep-
resentations where the extremes are seemingly mutually exclusive. At one end 
of the spectrum, population codes are built up from the sum of activity of a col-
lection of single neurons, which we term “ single neuron level” (SNL) codes. 
SNL codes assume that sensory, cognitive, or motor information resides at the 
single-neuron level in the form of  tuning curves, for example.  Tuning curves 
represent the trial-averaged response of a single neuron and refl ect the fact that 
a neuron is more likely to spike when a specifi c statistical feature is present 
in a stimulus, when a percept, thought, or decision is generated, or preceding 
a specifi c motoric feature. The population, in turn, codes information by ag-
gregating or combining information across neurons. A pooling code is perhaps 
the simplest example of an SNL code in which information is represented as a 
weighted average of activities of single neurons. At the other end of the spec-
trum, information is encoded at the  neural ensemble level (NEL). One example 
of an NEL code assumes that single neurons in isolation are uninformative 
but collectively they serve as cogs in a multineuronal machine whose spatio-
temporal dynamics carry information. The characterization of  motor cortex 
as a dynamical system put forth by Shenoy and Churchland exemplifi es such 
a code (Churchland et al. 2012; Shenoy et al. 2013). However, we subscribe 
to the viewpoint that the cortex employs NEL codes that do not ignore single 
neurons and their tuning properties while simultaneously employing higher-
order statistical relationships among neurons as a coding element. Changes 
in both rate and spiking correlations, in response to sensory stimuli or in rela-
tion to motor output, are generally linked (de la Rocha et al. 2007; see how-
ever, Biederlack et al. 2006). To understand what we mean by this perspective, 
consider the analogy of our decimal system for representing numbers. Single 
digits, such as “1” and “2,” have distinct meanings and, therefore, code infor-
mation. However, “12” refers to something quite different than the two isolated 
digits that comprise it and yet the ensemble code depends on the meanings of 
the individual digits. This suggests a hierarchical coding scheme where infor-
mation is carried at multiple levels of a hierarchy.

Why Use a Population Coding Scheme?

At the cortical level, it is well-established that single neurons are highly vari-
able from moment to moment and trial to trial, even under well-controlled 
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conditions (Heggelund and Albus 1978; Tolhurst et al. 1983; Vogels et al. 1989; 
Britten et al. 1993; Arieli et al. 1996; Lin et al. 2015). Moreover, neurons are 
interconnected by large numbers of dynamic and generally weak synapses and 
consequently must integrate multiple inputs to spike. It is likely that cortical 
codes depend on the collective activity of large groups of neurons. Fortunately, 
we now have the technological ability to experimentally evaluate  population 
coding schemes. As we discuss below, it remains unclear what the numerical 
size and spatial extent of an encoding population is beyond the fact that it is 
more than a single neuron.

SNL Codes

The population vector, one of the best known SNL codes, has proven effec-
tive in decoding reach direction from a group of motor cortical (M1) neurons 
(Georgopoulos et al. 1986). By fi tting directional  tuning curves of individual 
M1 neurons to cosine functions, the preferred directions of these cells are com-
puted and represented as two- or three-dimensional vectors. The population 
vector is then calculated as a weighted vector sum of the preferred directions, 
each weighted by its fi ring rate. This approach can be extended to incorpo-
rate the sum of population vectors (Gilbert and Wiesel 1990; Vogels 1990). 
Although originally applied to sequentially recorded neurons, this approach 
has been extended to simultaneously recorded neurons with good decoding 
success (Taylor et al. 2002). Population vector decoding has been applied to a 
variety of systems, including the  visual system, to estimate the orientation of 
faces (Oram et al. 1998) and, in the  auditory system, to localize a sound source 
based on intra-aural time differences (Fitzpatrick et al. 1997).

In general, the population vector decoder does not provide an optimal esti-
mator in the sense that it does not always minimize the variance of the es-
timator (Deneve et al. 1999); this can result in poor decoding performance 
(Montijn et al. 2016). Other SNL population coding schemes have been shown 
to be optimal under certain assumptions, including the optimal linear estima-
tor (OLE), the indirect OLE, and maximum likelihood estimation (Salinas and 
Abbott 1994; Deneve et al. 1999; Wang et al. 2007b). The indirect OLE ap-
proach has been extended for real-time, closed-loop neural prosthesis control 
of a 10-dimensional robot in a paralyzed patient (Wodlinger et al. 2015). In 
this application, single-neuron tuning models included not only reach direction 
but also wrist orientation and grasp velocities. Maximum likelihood estimation 
can also be implemented using a  recurrent  network model under certain as-
sumptions (Deneve et al. 1999).

Despite the general success of the population vector and other near-opti-
mal estimators, an important assumption underlies these population decod-
ing schemes: the fi ring rates of the population are assumed to be statistically 
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independent, conditioned on the stimulus, decision, or movement. It is this as-
sumption, in fact, which provides the population vector scheme with its ability 
to reduce noise by averaging over neurons, which in turn makes it particularly 
effective for decoding (Zohary et al. 1994). However, trial-to-trial correlations 
in spike counts that are independent of the specifi c stimulus or movement (i.e., 
noise correlations) have been documented in many sensory and motor corti-
cal areas and are often considered to be a nuisance for SNL population codes 
because the variance of a population mean estimator will not decrease as 1/N, 
where N is the number of neurons in the population. More generally, however, 
noise correlations do not always reduce population-level information and, in 
fact, can improve stimulus discrimination in population activity (Poort and 
Roelfsema 2009). Theoretical work by the Pouget group has identifi ed a spe-
cifi c kind of noise correlation (differential correlations) that is proportional to 
the product of the derivative of the  tuning curves and impacts the information 
capacity of SNL population codes (Moreno-Bote et al. 2014). The assumption 
of independence makes it diffi cult to extend this framework to an encoding 
model that incorporates synaptic and cellular mechanisms, since neurons are 
interconnected and collectively drive and support activity in the active popula-
tion; that is, they are not independent (Renart et al. 2010). However, the utility 
of SNL codes makes clear that single neurons do indeed represent information. 
We suggest that this fact should be incorporated into any cortical population 
coding scheme.

NEL Codes

Regardless of the cortical area recorded  or the recording method, research-
ers have found evidence of structured spatiotemporal activity in all cases: 
this is consistent with the  Hebbian  assembly phase sequence, which postu-
lates that across trials, functionally related assemblies or ensembles of neurons 
reliably propagate spikes from one ensemble to another (Hebb 1949; Abeles 
and Gerstein 1988; Villa et al. 1999; Beggs and Plenz 2004; Gourevitch and 
Eggermont 2010; Bathellier et al. 2012; Gansel and Singer 2012; Palm et al. 
2014; Peters et al. 2014; Reyes-Puerta et al. 2015). This coding scheme is 
made more attractive by the fact that it easily allows for inclusion of cell iden-
tity and is consequently compatible with cellular and synaptic mechanisms 
(Kruskal et al. 2013).

Correlation Codes

While it is widely recognized that cortical neurons exhibit correlated fi ring at 
different timescales and constrain population activity patterns, we postulate 
that these correlations code information.

From “The Neocortex,” edited by W. Singer, T. J. Sejnowski and P. Rakic. 
Strüngmann Forum Reports, vol. 27, J. R. Lupp, series editor.  

Cambridge, MA: MIT Press. ISBN 978-0-262-04324-3



 Coding in Large-Scale Cortical Populations 215

Synchrony

Synchronous fi ring of neuron pairs at the millisecond timescale have been 
shown to signal a variety of different sensory and motor states. Pairs of oscil-
lating neurons in  visual cortex have been shown to synchronize when stimulus 
features form a single, coherent visual stimulus (Gray et al. 1989). This and 
other experiments have been used to support the view that  synchronization 
serves to bind stimulus features that are perceptually related (Singer 2018a). 
In the motor domain,  synchrony has been shown to encode movement direc-
tion and expected visual cues for initiating movement in primary motor cortex 
(Riehle et al. 1997; Hatsopoulos et al. 1998; Kilavik et al. 2009; Denker et al. 
2011). Moreover, larger groups of synchronous M1 neurons have been shown 
to signal task epochs and behavioral conditions in an instructed delay reach-to-
grasp task (Torre et al. 2016). By identifying so-called cortico-motoneuronal 
cells that make direct synaptic connections with motor neurons in the spinal 
cord via spike-triggered electromyography recordings, it has been found that 
cortico-motoneuronal pairs which share similar muscle fi elds tend to be more 
synchronized than pairs that have different projection fi elds (Jackson et al. 
2003). Moreover, modeling work suggests that inputs to motor neurons can 
generate substantially more force output when they are synchronized (Baker et 
al. 1999). Therefore, cortical synchrony may provide a mechanism for directly 
affecting behavioral output.

Noise Correlations

Despite their potential detrimental effect on SNL population codes, noise cor-
relations have been shown to signal different behavioral states. For example, 
spike count correlations in frontal eye fi elds have been shown to vary dynami-
cally in distinct ways for different saccadic eye movements, despite the fact 
the neurons’ fi ring rates do not modulate (Vaadia et al. 1995). Spike count cor-
relations between pairs of M1 neurons have been shown to increase when two-
element movement  sequences were preplanned, compared to when they were 
planned one at a time, even when the fi ring rate modulations of the neurons 
did not differ under the two conditions (Hatsopoulos et al. 2003). This suggests 
that task complexity impacts the correlational structure.

Latent Variable Codes

A  latent variable code is a form of NEL code that assumes there are latent vari-
ables that are not explicitly observed but inferred from spiking data (i.e., the 
manifest variables). Principal components analysis and factor analysis are ex-
amples of continuous latent variable methods that have been used extensively 
to characterize large-scale cortical recordings (Mazor and Laurent 2005; Yu 
et al. 2009a). Unlike pooling codes, these methods depend on the covariance 
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of neuronal activity to fi nd subspaces in which most of the variance of activ-
ity resides. It is postulated that population activity resides in a much smaller 
subspace than what would be theoretically possible because of (a) the intercon-
nections between neurons, (b) the minimal coding requirements for the task 
at hand (see below), or (c) due to common input. Regardless, these subspaces 
have been demonstrated to enable decoding of cortical population activity and 
have also provided insights into how cortex represents information. For exam-
ple, animals have diffi culty learning to control brain–machine interfaces when 
this requires generating population activity outside of these intrinsic subspaces 
(Sadtler et al. 2014). Moreover, a recent study has shown that choice behavior 
in a visual discrimination task depends on population activity that resides in a 
principal component subspace, even though it is suboptimal (Ni et al. 2018).

Besides serving to reduce the dimensionality of high-dimensional neural 
data, continuous latent variables reveal a dynamic structure in the active popu-
lation that is not evident at the single-neuron level. In an elegant set of stud-
ies, Shenoy and colleagues have characterized motor and premotor ensembles 
as neural trajectories that exhibit relatively simple rotational dynamics during 
movement execution in a reduced subspace (Churchland et al. 2012; Shenoy 
et al. 2013). Different movements (e.g., movements to different goals) cor-
respond to different initial conditions within the movement subspace, but all 
movements share these underlying rotation dynamics. Moreover, movement 
 planning or preparation resides in an orthogonal subspace to the space that 
corresponds to the muscle activation and movement (Kaufman et al. 2014). 
According to Kaufmann et al., single neurons serve only as the building blocks 
of a multineuronal dynamical system that traverses different portions of state 
space. If anything is coded, it is the location or dynamics of the population 
state that represents planning or movement of a particular type. From an en-
coding perspective, the informative nature of structured population dynamics 
indicates that the spatiotemporal interactions between neurons, and the corre-
sponding cellular and synaptic mechanisms that generate this structure, will be 
fundamental to any unifying theory of cortical population coding.

 Hidden Markov models (HMMs) are examples of discrete latent codes that 
have been used to characterize cortical population dynamics as a sequence of 
discrete “hidden” states which account for shared variability across the popula-
tion (Radons et al. 1994; Abeles et al. 1995; Seidemann et al. 1996; Kemere 
et al. 2008). The probability of a state transition is based solely on the current 
state of the system. Moreover, each hidden state has an associated probability 
distribution for observed spiking responses across the population. As com-
pared to populations of poststimulus time histograms, coupling hidden states 
can more accurately predict the spiking statistics of population activity, par-
ticularly when activity is not time-locked to an external stimulus (Abeles et al. 
1995). Moreover, each state is associated with distinct pairwise neural correla-
tions, often refl ecting different behavioral states. Recently we applied a HMM 
to simultaneously recorded spiking data from primary motor cortex while 
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monkeys engaged in reaching movements and found that population activity 
appears to transition among a small set of states (Kadmon Harpaz et al. 2018). 
More importantly, we discovered that state transitions correspond to velocity 
extrema of reaching, such that a given state corresponds to either an accelera-
tive or decelerative phase of reaching in a particular direction. Simulations us-
ing single-neuron tuning models of direction and speed applied to the reaching 
movements could not replicate the fi ndings of our  HMM. This implies that 
motor cortical population dynamics may be more accurately characterized as 
transitions among discrete hidden states that code for accelerative/decelerative 
movements in particular directions.

Spatiotemporal Patterning

Most NEL coding schemes consider information encoded  in the pattern of 
activity across a population but largely ignore the spatial layout of neurons 
within the population, despite the strong anisotropy of neurons and their con-
nection likelihood. Studies using multielectrode arrays and voltage-sensitive 
dyes, however, have documented propagating wave activity consistent with 
spatiotemporal codes within the visual (Arieli et al. 1995; Prechtl et al. 1997; 
Roland et al. 2006; Xu et al. 2007), somatosensory and sensorimotor (Petersen 
et al. 2003; Ferezou et al. 2007),  auditory (Song et al. 2006; Witte et al. 2007), 
and motor cortices (Rubino et al. 2006; Takahashi et al. 2015) as well as  hippo-
campus (Lubenov and Siapas 2009; Patel et al. 2012; Zhang and Jacobs 2015). 
In the CA1 region of hippocampus, local fi eld potential (LFP) waves propagate 
along the septotemporal axis, mediated by theta oscillations, and may serve to 
encode not only the present location of the animal but also the past and future 
locations (Lubenov and Siapas 2009). In primary and premotor motor cortices, 
LFP waves in beta oscillations propagate along the rostrocaudal and medial-
lateral axes of the cortical surface, respectively. The propagating direction and 
speed do not vary with movement direction and thus do not appear to code 
for movement parameters. However, in an instructed delay paradigm, where 
a visual target of an upcoming movement is presented, visually evoked waves 
do encode upcoming movement direction in the amplitude and timing of these 
evoked potentials (Rubino et al. 2006). Moreover, the sequential fi ring of pairs 
of M1 neurons carries more directional information when the two neurons are 
oriented along the LFP wave-propagating axis (Takahashi et al. 2015).

We have documented another spatiotemporal pattern of activity in mo-
tor cortex that may be important for initiating movement (Best et al. 2017; 
Balasubramanian et al. 2019). Voluntary movement initiation involves the 
modulation of large populations of M1 neurons around movement onset. 
Despite knowledge of the temporal dynamics of cortical ensembles that lead 
to movement, the spatial structure of these dynamics, across the cortical sheet, 
have been largely ignored. We have shown (Best et al. 2017) that the timing 
in attenuation of the beta frequency oscillation amplitude, a neural correlate of 
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corticospinal excitability (Pfurtscheller and Lopes da Silva 1999), forms a spa-
tial gradient across motor cortex prior to movement onset with a defi ned beta 
attenuation orientation from earlier to later attenuation times. We have also 
shown that a similar propagating pattern is evident in the modulation times 
of populations of M1 neurons. Interestingly, even though M1 neurons modu-
late activity during movement preparation well before movement onset, these 
modulation times do not exhibit spatial structure, suggesting that spatiotempo-
ral structure in modulation may be necessary to trigger movement. It should be 
emphasized that such spatiotemporal patterns do not lessen the possibility that 
single neurons also carry information. Rather, we argue that cortex may be us-
ing a hierarchical coding scheme: large-scale patterning signals certain global 
aspects of behavior while single neurons code for more specifi c aspects or, 
alternatively, large-scale patterning provides context for single-neuron codes 
which together form a population code.

How Would an Ensemble Code Work?

To truly understand the code, we must eventually synthesize it with the cellular 
and synaptic mechanisms that implement the code. Neocortical microcircuitry 
includes the neurons and synaptic connections within volumes of ~500 m × 
500 m × 1000 m. Individual neurons are highly interconnected and connec-
tion likelihood is biased toward neighboring neurons (Song et al. 2005; Ko et 
al. 2011; Perin et al. 2011). Moreover, in primary sensory cortices, only ~5% 
of connections that a neuron receives arise from ascending inputs (Peters and 
Payne 1993; Douglas and Martin 2004), and a comparable portion originates 
from distal cortical regions (Budd 1998). The microcircuit, then, represents 
the scale over which (a) most excitatory and inhibitory interactions take place, 
and (b) synaptic connections strengthen or weaken according to the relative 
 spike timing between pre- and postsynaptic neurons (Kruskal et al. 2013). This 
is also the scale at which  Hebbian  learning occurs. Consequently, microcir-
cuits form the building blocks from which the cortical  population code is built. 
Imaging approaches permit researchers to densely sampl e neurons allowing 
microcircuit dynamics to be more directly linked to synaptic mechanisms (Ko 
et al. 2011; Chambers and MacLean 2015).

Individual synaptic connections are weak, ranging from 0.2–1.0 mV 
(Holmgren et al. 2003), and patterns of spiking are complex and variable, 
which make the mapping between structure and functional dynamics far from 
straightforward. However, a small set of correlations in population activity is 
indicative of synapses that are actively involved in the recruitment of postsyn-
aptic neurons; namely, those synaptic inputs that occur at just the right time 
to drive the postsynaptic neuron to threshold (Ko et al. 2011; Chambers and 
MacLean 2015, 2016). We found that these “recruitment” synapses are directly 
linked to specifi c higher-order motifs in population correlational structure. To 
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make this observation, we accounted for the nonlinear integrative properties 
of neurons by using a combination of spiking neuronal network models and 
experimental measurements (Chambers and MacLean 2016). Fan-in triangles, 
where two input neurons are themselves connected, coordinate the timing of 
presynaptic inputs during ongoing activity to facilitate postsynaptic spiking. 
Interplay between higher-order synaptic connectivity and the integrative prop-
erties of neurons constrains the structure of network dynamics and shapes the 
routing of information in neocortex (Chambers and MacLean 2016).

We have also linked higher-order correlational structure to the activity of 
neurons in  mouse  visual cortex by imaging microcircuit responses to visual 
input in awake, head-fi xed, ambulating mice. We found that trial-averaged 
tuning properties of neurons explain only a small fraction of the single-trial 
activity of neurons, similar to other studies (Reimer et al. 2014; Montijn et al. 
2016). By summarizing the dynamics as a functional network, we are able to 
use the neighbors of a neuron, necessarily including both tuned and untuned 
neurons, to predict individual neuron activity on a single-trial basis.  Perception 
and behavior take place in real time, after all, so it is necessary that any popula-
tion encoding model of stimulus representations in cortex encompass single-
trial responses. Moreover, again a specifi c triplet motif maximized predictions 
of single-trial responses (Dechery and MacLean 2017). Consistent with these 
results from visual cortex, Meshulam et al. (2017) found that they were able to 
best predict single-neuron activity in  hippocampus by employing a maximum 
entropy model that incorporated the state of all of the recorded neurons, includ-
ing neurons that have well-defi ned place fi elds as well as those which do not. 
Together, these studies indicate that the collective behavior of neurons, both 
tuned and untuned, are necessary to predict single-trial neuronal responses and 
argue strongly in favor of an NEL coding framework.

At any given moment in time, it is unclear how many neurons are nec-
essary to encode a stimulus or motor output. Using connectivity estimates, 
synaptic strength estimates, as well as membrane potentials and conductance 
states of individual neurons, a lower bound estimate of approximately 100 pre-
synaptic neurons has been postulated (Ainsworth et al. 2012). As described 
above, low-dimensional summaries of population dynamics are a very effec-
tive means to decode population activity (Briggman et al. 2005; Churchland 
et al. 2007; Harvey et al. 2009). Consistently, a number of studies have found 
that the number of observed spatiotemporal neuronal activity patterns are lim-
ited (MacLean et al. 2005; Luczak et al. 2007, 2015; Luczak and Maclean 
2012). Moreover it appears that baseline connectivity also constrains feasible 
dynamics during  learning (Shenoy et al. 2013; Sadtler et al. 2014; Shenoy and 
Carmena 2014). All of these data suggest that population dynamics occupy a 
much lower-dimensional space than the number of neurons recorded, which 
indicates diminishing returns as the number of recorded neurons increases into 
the thousands. Two recent studies, however, provide compelling arguments that 
the number of neurons, and more loosely the number of dimensions, necessary 
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to encode a motor output or sensory stimulus likely depends on what is being 
encoded. The neural  task complexity theory (NTC) posits that the complexity 
of the task that an animal is performing combined with the smoothness of the 
recorded neural trajectories determine the size of the population code (Gao et 
al. 2017). Further, NTC theory maps the behavioral parameters within neural 
dynamics and predicts that this volume will be small when tasks are simple 
and trajectories are smooth (i.e., the covariance of neuronal activity is well 
captured in the recorded population). NTC theory predicts that the size of the 
coding pool and, relatedly, the number of dimensions necessary to summarize 
population dynamics scale with the nature or diffi culty of the task or stimulus.
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