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Abstract

Information  processing in the brain is  implemented across several temporal and spatial 
scales by populations of neurons. This chapter addresses how single neurons, small net-
work motifs, and larger networks, in which emergent dynamics are largely shaped by 
the connectivity of the system, contribute to this processing of information.  Computa-
tion is defi ned  as a semantic mapping; that is, it is the process by which representations 
of external (e.g., stimulus-driven) or internal (e.g., memories) information change. A 
feature specifi c to neuronal computation is that mappings are mostly local, constrained 
by connectivity patterns between neurons. This implies that complex mappings from 
local information onto representations that are highly relational and abstracted, and 
which rely on information between distant parts of the system, require mechanisms that 
can bridge, bind, and integrate pieces of information across large scales. An overview 
of this process in the nervous system is delineated: Local information processing is 
described at the level of individual neurons and small motifs. Emergent phenomena 
are addressed that implement information processing across large recurrent neuronal 
populations. Finally, an omnipresent but mostly ignored feature of neuronal systems, 
 delay-coupled computation, is described.

Information Processing in Single Neurons and Populations

An understanding of how information is processed in neural systems begins 
with a consideration of how an individual neuron perceives and processes in-
formation, before extending this scope gradually to larger systems. Our goal 
in this chapter is to present a concise, abstract view of computation in neural 
systems, understood to be key to a meaningful change in the representation of 
information. In the interest of brevity, the biological complexity of neurons 
and networks (e.g., the role of specifi c ion channels or the potential infl uence 
of glia cells and neuromodulators) will not per se be addressed.
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A Stochastic Process Linear-Nonlinear Neuron Model

From the perspective of the  linear-nonlinear (LN) model, a neuron is a com-
putational unit that receives a multivariate time-varying input signal through 
its synaptic inputs and generates a univariate time-varying output signal. This 
mapping from input to output signals is near instantaneous (at least time-in-
variant), as the neuron itself is assumed to have, at most, a very limited internal 
memory1 and be subject to noise.

In the mathematical framework of stochastic processes, a neuron can thus 
be concisely described as a nonlinear, causal, time-invariant operator that maps 
a multivariate stochastic process onto a univariate stochastic process. We make 
several simplifying assumptions that result in a convenient class of neuron 
models (Ostojic and Brunel 2011; see also Figure 11.1):

• The neuron’s operation can be modeled as a leaky integrator or, even 
simpler, an instantaneous input-output mapping.

• It is composed of a linear operator, which reduces the multivariate in-
put arriving at different synapses along the dendritic tree to a univariate 
input to the neuron’s soma, followed by a nonlinear transformation.

• The linear operation is parameterized by synaptic weights, which can 
be positive or negative.

• The nonlinear transformation, which we refer to as the activation func-
tion or just nonlinearity, is a monotonically increasing, (locally) differ-
entiable and bounded function.

While the activation could be further used in a spike generation process as an 
instantaneous fi ring rate, we treat it here as the neuron’s continuous state or 
output. Each neuron in a population independently processes its own input 
(which may be correlated to other neurons’ inputs), and its state provides 
one component of the entire population’s multivariate state. The computa-
tion carried out by a population of neurons, mapping a multivariate input 
signal onto a multivariate state, must thus arise component-wise from the 
computations realized in the individual neurons. Each neuron, however, is 
limited to those operations which can be realized by a LN model under the 
above constraints.

To better understand the capabilities and limitations of this class of models, 
it helps to analyze them from a  machine  learning perspective, where such mod-
els commonly appear under different guises and names.

1 The exception to this rule is found in plasticity mechanisms, which we assume to operate on 
a much slower, separate timescale than that of the output signal, and thus they can be treated 
as virtually constant in this context. The commonly made assumption of near instantaneous 
operation of the neuron further presumes that slower active dendritic processes do not substan-
tially contribute to computation, which can be called into question and may turn out to be an 
overly simplistic perspective.

From “The Neocortex,” edited by W. Singer, T. J. Sejnowski and P. Rakic. 
Strüngmann Forum Reports, vol. 27, J. R. Lupp, series editor.  

Cambridge, MA: MIT Press. ISBN 978-0-262-04324-3



Computational Elements of Circuits 197

LN Models in Machine Learning

Using a Heaviside function for the nonlinearity, LN models appear in  ma-
chine  learning in the form of linear hard-margin classifi ers, such as the clas-
sical  perceptron (Rosenblatt 1958), linear support vector machines (Hearst et 
al. 1998), or depth-one decision trees (so-called “decision stumps”; Criminisi 
et al. 2012). With continuous nonlinearities, such as the logistic function, 
these models can be used as soft-margin classifi ers and regressors, as in gen-
eralized linear models (GLMs) (McCullagh and Nelder 1989), where the 
nonlinearity is used to relate a linear combination of input features to the ex-
pected value of the (task-specifi c) label associated with the data. To improve 
performance, multiple instances of such models can be combined laterally 
to form an ensemble, used in a boosting procedure or stacked hierarchically, 
like the layers of an  artifi cial neural  network (Hopfi eld 1988) or the levels of 
a decision tree.
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Figure 11.1 A model neuron receives a linear combination of multiple time-varying 
stochastic processes that are scaled by adaptive, synaptic weights and integrated into 
the neuron’s membrane potential. By sensing some suffi cient statistics of the membrane 
potential, the neuron’s nonlinearity can be adjusted to achieve an activation (or inten-
sity) with desirable statistical properties. Assuming stationarity of the input processes, 
the neuron’s nonlinearity can be determined by the desired mapping from the univariate 
membrane potential distribution to an intensity distribution. Adapted from Leugering 
and Pipa (2018).
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 Computation in this context simply refers to the ability of the model to 
encode specifi c task-relevant information about its inputs into its output. The 
same claim has been made for individual biological neurons, as well as whole 
layers of neurons in deep networks under the “information bottleneck” prin-
ciple. The deceptively simple argument is that each neuron (or each layer of a 
network, respectively) is presented with a high-dimensional input signal that 
carries task-relevant, as well as irrelevant, information, and, in a noisy environ-
ment with limited capacity to transmit information, ought to transform it into 
an informative low-dimensional output signal (Becker 1996).

Supervised Learning

In a  supervised setting,  where the desired output of the model is known at 
all times, the extraction and transmission of task-relevant information with 
simultaneous suppression of task-irrelevant “noise” represents a form of lossy 
compression. In multilayer networks, backpropagation can provide a super-
vised error signal for each layer and ultimately each neuron, thus allowing it 
to locally solve a lossy compression problem, which has been hypothesized 
as the theoretical mechanism underlying the surprising success of  deep neural 
 networks (Shwartz-Ziv and Tishby 2017).

Unsupervised Learning

The concept  and potential mechanisms of  error backpropagation in biological 
neural networks, however, are controversial, and the existence of supervised 
target signals may be called into  question altogether. In the absence of super-
vision, the  information bottleneck principle can be restated as the objective 
for each neuron to simply encode its inputs into its output in the most infor-
mative way possible, since it cannot distinguish task-relevant from irrelevant 
information.

The information encoding of the output signal is refl ected in the fi ring 
statistics, with heavy-tailed fi ring rate distributions corresponding to sparse 
spiking codes, and narrowly peaked distributions corresponding to tonic fi ring 
or bursting codes. By driving synaptic plasticity, this can, in turn, shape the 
topology of synaptic connections and lead to the formation of specifi c motifs, 
thus allowing a population of neurons to implement task-relevant computation 
without supervision.

Under the biological constraints imposed on the neuron (e.g., bounded fi r-
ing rates, energy limitations), the mutual information between input and output 
is bounded by the entropy attainable by the output distribution. A common 
objective is thus for the neuron to enforce a maximum  entropy distribution of 
its outputs by appropriately adjusting its nonlinearity, while simultaneously 
tuning its synaptic connection weights to project the multidimensional input 
signal onto the most informative subspace. Equivalently, for a population of 
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neurons, the  information bottleneck objective is to realize a maximum entropy 
joint distribution, such that each marginal distribution of an individual neu-
ron’s output satisfi es the biological constraints.

Unsupervised Learning Application: Independent Component Analysis

As it turns out, this objective fully determines a unique optimal choice of 
nonlinearity for a given family of input distributions and a desired output 
distribution. It also implies that the linear subspaces selected by the neu-
rons’ respective synaptic input weights should correspond to the main in-
dependent components. Consequently, this problem is also referred to as 
 independent component analysis (ICA), a generalization of principle com-
ponent analysis which can no longer be solved by linear methods (Hyvärinen 
and Oja 1998; Triesch 2007).

This intuition transfers seamlessly to a framework of stochastic processes 
(Leugering and Pipa 2018), where a population is tasked with mapping its 
(stationary) multivariate input process onto a multivariate output process, with 
a joint distribution composed of independent components with given marginal 
distributions. By factoring the population’s joint distribution into its marginal 
distributions and a copula function, it becomes apparent that this objective can 
be achieved through the interaction of two distinct mechanisms:

1. The copula function captures all of the dependency structure pres-
ent in the joint distribution and depends only on the choice of syn-
aptic input weights of the population; thus it can be adjusted by 
synaptic plasticity.

2. The marginal distribution of each neuron’s output can be enforced 
purely by an appropriate choice of nonlinearity; thus it can be ad-
justed by intrinsic plasticity.

Since all of the information required to solve the ICA problem is available 
locally to the neurons or their synapses, it can be solved by the LN model dis-
cussed above using simple, biologically plausible mechanisms of intrinsic and 
synaptic plasticity in a time-continuous, noisy setting.

Using motifs of several laterally inhibiting neurons, different independent 
components can be found, leading to a highly informative, multivariate output 
signal. As shown in Figure 11.2, such a structure can be used to learn, in an un-
supervised fashion, to classify MNIST images with just a handful of neurons. 
For an in-depth discussion of this result, see Leugering and Pipa (2018).

Computation in Networks Using Emergent Properties

The cerebral cortex is a highly distributed system with reciprocal connec-
tions that shape neuronal activity through self-organizing and that can create 
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coherent states able to encode representations of sensory objects, decisions, 
and programs for motor acts (Uhlhaas et al. 2009). The topology of the connec-
tivity shares properties with small world networks having no singular center 
where all information converges (Gerhard et al. 2011). This raises questions 
of how the numerous computations on the level of single neurons are coor-
dinated and bound together to give rise to coherent percepts and actions, and 
how relations between simultaneously represented contents can be encoded. 
One option is that  neuronal synchrony can implement both features. Several 
mechanisms have been discussed—for instance mediated by inhibitory syn-
apses, enhanced via gap junctions, induced by motifs of neuronal connectivity 
(Vicente et al. 2008; Pérez et al. 2011; Messé et al. 2018)—that can induce 
neuronal synchronous fi ring even despite long conduction delays. However, 
one of the central challenges that has not been suffi ciently addressed is that the 
mechanism needs to enable the neurons to synchronize and desynchronize in a 
stimulus-specifi c fashion, and thereby to encode relationships.  Noise-induced 
coherence is one such mechanism that was recently demonstrated to produce 
fast, stimulus-specifi c, and biologically plausible  synchronization patterns.

First discussed in complex and excitable systems (Pikovsky and Kurths 
1997), noise-induced coherence is a process that can structure and synchronize 
the activity of the system based on noisy or even unstructured input. The nature 
of noise-induced coherence is that the complex system (the dynamical ele-
ments, e.g., neurons, together with the network topology) defi nes patterns that 
exhibit enhanced coherence if the system is driven by a corresponding motif, 
neuron-specifi c optimal amplitude of unstructured noise. In other words, and in 
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Figure 11.2 A small motif of fi ve neurons receives feedforward excitation from 28 × 
28 neurons, representing pixels of visual inputs. Images from the MNIST database are 
presented successively, while the synaptic weights and each neuron’s nonlinearity are 
adjusted by local synaptic and intrinsic plasticity, respectively. Only the combination of 
both learning mechanisms leads to the (unsupervised) discovery of independent com-
ponents in the input space, corresponding to the average input for each class. Lateral 
inhibition learns to decorrelate the neurons and ensures that different components are 
discovered, reducing redundancy and thus maximizing the information content of the 
motif’s output. Results from Leugering and Pipa (2018).
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respect to neuronal networks, noise translates a pattern of neuron-specifi c fi r-
ing rates into patterns of coherent and synchronized population responses (i.e., 
translation of a neuron-specifi c rate code to a population-based sync code). 
Importantly, this translation is network specifi c, which opens the possibility 
that the expression of synchronous events is not only driven by the stimulus-
specifi c rate pattern but also by the network, and its structure is shaped by 
neuronal plasticity.

Transformation of Spike Rate Coding to Coherent 
Population Codes via Noise-Induced Coherence

To illustrate the  mechanism and encoding based on noise-induced coherence, 
let us consider an example for the  visual cortex V1. In general, it is known 
that  network structure of cortical networks is at least partially shaped by the 
experience of past activation mediated by neuronal plasticity. For V1, this 
implies that the connection strength horizontal connections in V1 refl ect the 
aggregate statistics of natural visual scenes (Onat et al. 2013); that is, V1 
cells with nearby receptive fi elds are preferentially connected, and specifi -
cally when they select for similar visual stimuli. Figure 11.3a shows a net-
work simplifi ed to such a V1 prototypic connectivity pattern. The system 
receives stimulus-specifi c input described by neuron-specifi c retinal coor-
dinates which match their cortical position (retinotopy) and have a particu-
lar angle (orientation tuning) presynaptic spike rates (i.e., uncorrelated and 
rate-modulated Poisson fi ring). To illustrate the effect of noise-induced co-
herence, we use two kinds of stimuli: one that is open and composed of two 
shorts blocks, and one that is closed and composed of a longer bar. Given the 
 retinotopic mapping, this implies that the activation pattern, in comparison 
to the underlying network, results in different shortest path lengths between 
stimulus-driven cells. Only few of these cells will have direct connections, 
since horizontal connections preferably connect cells with nearby receptive 
fi elds. More generally, the  network connectivity implies a metric for possible 
stimulus patterns. Given this metric, for V1, the shortest path between any 
two responding cells will likely be longer, on average, for a scattered stimulus 
than for a more compact stimulus. As a result, the same cells which receive 
a presynaptic input pattern matching the connectivity of the network (here, 
cells that are part of a continuous patch) exhibit stronger noise-induced co-
herence than others. Such mechanisms can be generalized to more complex 
encoding schemes, depending on the connectivity patterns of the network. 
For example, the well-known orientation tuning of cells in V1, in combina-
tion, and network motifs described by preferred connectivity across cells with 
similar orientation will result in enhanced coherence of neurons that encode 
chains of shorter line segments (see Figure 11.4). In general, noise-induced 
coherence is a mechanism that can measure the similarity between the net-
work connectivity and the stimulus-induced spike rate pattern (Korndörfer et 
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al. 2017). It can therefore be a measure of how well the stimulus matches a 
prior learned by neuronal plasticity and encoded in the  network’s connectiv-
ity. Here the stimulus-induced spike rate refl ects a classical  labeled line code. 
Thus,  spike  synchrony generated by noise-induced coherence carries syner-
gistic information that refl ects to which degree the current stimulus encoded 
by the spike rate is expected, given past stimulus experiences. Such a signal 
could be used early after input onset in a feedforward fashion, for instance, 
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Figure 11.3 (a) Noise-induced coherence for two alternative presynaptic stimuli (red, 
a closed line; green, an open line segment). Coherence is measured between the green- 
or red-highlighted neurons. The only difference is the context given by the stimulus 
drive, which itself is composed of unstructured Poisson noise. The network topology 
is defi ned by nearest neighbor connection matches, and stimuli are matched using  reti-
notopic mapping. (b) Synchrony measure of the pairs of neurons shown in (a) and for 
the two stimulus conditions. Coherence is higher for the compact closed line, since the 
shortest path length between stimulus-driven neurons is smaller for the closed contour. 
(d) This feature is generalized to the amount of scattering of a stimulus; that is, the 
greater the scattering, the larger the shortest path length between neurons, given the 
metric of the underlying network connectivity. The resulting stimulus-induced coher-
ence (c) is the largest for the most compact, and the lowest, for the most scattered 
stimulus. Adapted from Korndörfer et al. (2017).
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to guide attention toward stimuli composed of plausible parts. In contrast to 
many other types of  synchronization, it also does not require, but can be im-
proved by, inhibitory cells (Korndörfer et al. 2017), and it produces fi ring 
patterns that closely resemble in vivo recorded patterns (e.g., Gray et al. 1989; 
Uhlhaas et al. 2009).

Reservoir Computing

Most mechanisms discussed  over the past decades for neuronal  information 
processing require highly structured networks, specifi c types of dynamical 
processes, and very specifi c encoding schemes  of information (e.g., rate code 
versus population spike codes). A frequently used feature of computational 
models is that they rely on  attractor dynamics, which can be trained to imple-
ment specifi c computational features, such as associated memory in  Hopfi eld 
networks (Hopfi eld 1982) or the  winner-takes-all mechanism (Maass 2006) for 
decision making, for example.

Like the  ICA network discussed above, all of these computational models 
implement a clearly defi ned information processing principle and rely on a 
very specifi c type of implementation, in terms of connectivity and dynamical 
elements. This is a strong advantage, since it allows us to study principle and 
well-defi ned behavior, and to reduce the computation to a minimal set of re-
quired properties. At the same time, this reductionism also renders the models 
biologically implausible, since biological systems are subject to noise on pretty 
much any property, such that neuronal networks are mostly random with some 
statistical preferences for certain motifs, and neurons are diverse in type and 
morphology.

Therefore, a strikingly different model for neuronal computation is res-
ervoir computing, originally introduced as  liquid state machines by Maass 
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Figure 11.4 Average cross correlation of noise-induced coherence between two sets 
of neurons marked in blue for two different stimulus conditions: (a) closed line segment 
and (b) open line segment. The noise-induced coherence is stronger for the closed, com-
pared to the open, condition. In the original publication (Korndörfer et al. 2017), it is 
shown that this increased coherence can be decoded as closed contour as early as a few 
spikes after stimulus onset (70 ms).
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et al. (2002) or  echo-state  networks by Jaeger and Haas (2004). In contrast 
to most other computational principles, the  recurrent network of a reservoir 
computer can be unstructured and random. This surprising property results 
from the simple insight that the distance between random mappings of states is 
growing fast, with increasing dimensionality of the mapping. In other words, 
implementing a certain computation does not require a dedicated network with 
specifi c connectivity tailored for the given task but, in principle, only a random 
network that implements a suffi ciently high-dimensional random mapping. In 
the fi eld of  machine  learning, this is known as feature expansion or kernel 
machines (Schölkopf and Smola 2002). Further, reservoir computing makes 
explicit use of the recurrence of neuronal networks to maintain an echo (i.e., 
memory capacity) of past inputs.  This echo is mediated by reverberating activ-
ity, generated by the recurrent connectivity. Together, feature expansion and 
memory of the system can render a reservoir computer a universal computer 
(Buonomano and Maass 2009). The only task-specifi c element in reservoir 
computing is a task-specifi c mapping that can be  learned by  supervised, semi-
supervised (Toutounji and Pipa 2014), or  reinforcement  learning algorithms 
(Aswolinskiy and Pipa 2015).

The remarkable insight of reservoir computing is that random recurrent net-
works can implement, in principle, any kind of computation if the networks are 
suffi ciently complex. From a biological point of view, this implies that initially 
unstructured networks can bootstrap themselves, based on neuronal plasticity, 
to improve performance. Importantly, it can operate initially even without any 
structure.

Computation in Delay-Coupled Systems

When describing computation  in the nervous system from the perspective of 
abstract single neurons or recurrent networks which show emergent behavior 
as a collective, a simplifying assumption is often made: interactions between 
neurons are instantaneous and not delayed. This is simply because delays in 
differential equations complicate the analysis of such systems signifi cantly, 
and deriving theoretical results is a lot harder.

In biophysical reality, however, the brain is a network of nodes and wires 
that must be subject to transmission delays. For instance, conduction delays of 
tens of milliseconds occur in  axonal transmission of spikes (Ringo et al. 1994). 
Interspike intervals, indicative of the timescales on which neurons compute 
outputs, have been found on the same scale in the motor system (Calvin and 
Stevens 1968) or in retinal ganglion cells (Levine and Shefner 1977). It is 
thus clear that delays play a role in the dynamics and computational proper-
ties of neural networks. A long-established example, where this role is well 
understood, is audio processing: transmission delays on delay lines are used to 
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distinguish left ear input from right ear input, and interpolate the location of a 
sound source (London and Häusser 2005).

In cortical structures, network motifs or microcircuits have been found 
that circumvent transmission delays and lead to  zero time lag  synchroniza-
tion (Vicente et al. 2008). On the other hand, in microcircuits where trans-
mission delays are modeled, only very specifi c topologies allow for coherent 
spiking activity, which delays control phase differences between oscillatory 
neurons (Pérez et al. 2011). So, locally, transmission delays control phase 
transitions between in-phase and out-of-phase response, whereas, globally, 
 axonal delays can stabilize coherent response-important phenomena in neu-
ral computation.

Even still, these examples only describe how delays can negatively impact 
behavior of microcircuits or stabilize existing behavior.  Future work should in-
vestigate the degree to which the added complexity of delay-coupled systems 
can be exploited for computation.

A Single Node with Delayed Feedback

Stabilizing emergent phenomena may not be the only mechanism by which 
delays can aid computation in the nervous system. Instead, the benefi t of de-
layed interactions can be illustrated theoretically by examining a single com-
putational node with delayed feedback. This very simple setup is described by 
a delay differential equation:

dx t f x t x t dt. (11.1) 

The equation can be solved by a trick known as the  method of steps (Guo and 
Wu 2013), which is both intuitive and illustrative of the complexity of de-
layed interactions: Assume that the solution to Equation 11.1 on some interval, 
[t0 – τ, t0], is known and denote that solution ϕ0. For the subsequent overlap-
ping interval, [t0, t0 + τ], Equation 11.1 can then be rewritten as

dx t f x t t dt, ,0 (11.2) 

since for all t ∈ [t0, t0 + τ], it holds that t – τ ∈ [t0 – τ, t0], where ϕ0 is the solu-
tion. This is now an ordinary differential equation and can be solved using tra-
ditional methods. However, the starting condition for the new solution is now 
a tuple (ϕ0, ϕ0(t0)) of a function, and the function is evaluated at t0. Further, the 
solution on the interval [t0, t0 + τ] is again a function; let that function be ϕ1. In 
the method of steps, this procedure is iterated with this new starting value for 
the next interval of length τ. In general, if ti = t0 + iτ, then ϕi is the solution on 
the interval [ti–1, ti].

Even though Equation 11.1 is a differential equation of a single, scalar vari-
able, solving it involves mapping functions onto functions for each τ interval 
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or cycle (Figure 11.5a) and is therefore infi nitely dimensional. Delay differ-
ential equations are a subclass of partial differential equations whose state is 
described by functions, instead of fi nite-dimensional state vectors.

By introducing one simple, delayed feedback to a dynamical system, we el-
evate the  complexity from one to infi nitely many dimensions. This complexity 
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Figure 11.5 (a) Schema of solving delay differential equations with the method of 
steps. Functional solutions ϕi are mapped onto solutions ϕi+1 via an integral over the 
original delay differential equations, where the delay dependency is replaced by a de-
pendency on the last solution. (b) A  delay-coupled  reservoir utilizes the complexity 
of delay differential equations for computation by creating an input-driven dynamical 
system and feeding sampled activity during one τ cycle into a GLM readout trained to 
solve a specifi c task. (c) Networks of delay-coupled nodes can be understood as small 
recurrent systems inside a larger recurrent system. This model may be used to model the 
complexity of recurrence and delay coupling at the same time.
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not only makes solving the mathematical problem more diffi cult, it also leads 
to dynamics that can be used for computation and  inference.

The Delay-Coupled Reservoir

Introduced by Appeltant et al. (2011), the delay-coupled reservoir is a system 
described by a delay differential equation, such as Equation 11.1, but driven 
by an input u(t):

dx t ax t x t u t, , (11.3) 

where 𝑔 is a nonlinear function. The key insight from this work is that the ac-
tivity in/of this simple one-node recurrent system can be sampled N-times dur-
ing one delay cycle of length τ, and this sampled activity can be treated as the 
N-dimensional of a reservoir computer with N nodes. The input u(t) is adapted 
to also change on the timescale of one τ-cycle, such that each τ-cycle associ-
ates one N-dimensional vector of activations with one input value. Following 
the reservoir computing procedure, this activation vector can then be used in a 
linear readout to learn a time-invariant,  fading- memory function on the input 
(Figure 11.2).

The on-the-surface simplicity of delay differential equations leads to straight-
forward hardware implementations, where some nonlinear element is driven by 
input and self-coupled via a delay line. These simple building blocks have led 
to implementation based on standard electronic building blocks, but they also 
allow for the exploration of new computing devices, as in using delay-coupled 
lasers and photonics (Larger et al. 2012).

The hidden  complexity of the system, however, allows it to be used in  time-
series forecasting,  speech recognition, and even volatility prediction for fi nan-
cial markets (Appeltant et al. 2011; Grigoryeva et al. 2014).

This complexity, and the process of obtaining a vector of activity, can also 
be looked at theoretically using the method of steps. The iterative solution of 
the ordinary differential equation for subsequent τ-cycles, or intervals of length 
τ, can then be approximated analytically and written as a vector update equa-
tion for the N-relevant sample points directly (Schumacher et al. 2013). Thus, 
for computation within a reservoir computing setup, the infi nite dimensionality 
of space of solutions to the delay differential equation reduces to N dimen-
sions, a free parameter of the model. One can therefore profi t from the poten-
tially infi nite dimensionality of a functional state. In practice, with a chosen 
decay rate α and a specifi c nonlinearity 𝑔, choosing arbitrarily large N does not 
benefi t specifi c  machine  learning tasks above a task-dependent soft threshold. 
Nevertheless, researchers have seen benefi ts in expanding the dynamics of this 
simple, nonlinear, and delayed feedback-coupled node into an N = 50 up to an 
N = 800 dimensional state vector, as input to the linear regressor.
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Instead of sampling the activity of the delay-coupled reservoir at N evenly 
spaced points, one can optimize the placement of these readout points. Here, 
it is useful to treat the N sampling points as a network of virtual nodes with 
a very particular connectivity structure: a lower diagonal exponential decay 
matrix. The distance from one sampling point, or virtual node, to the next can 
then be fi ne-tuned according to a homeostatic plasticity rule. It presupposes 
that good spatiotemporal computational performance is achieved when differ-
ent virtual nodes are both sensitive to their inputs and as diverse as possible 
(Toutounji et al. 2015). The experiments in the study show that this rule does 
indeed lead to increased performance. From the point of view of the readout, 
the result permits a crude biological interpretation: a  linear-nonlinear output 
neuron optimizes the locations along an axon, where it “reads” the activity of 
another neuron with complex time-dependent dynamics. Clearly, this inter-
pretation is somewhat bold, but it highlights the potential of  future research 
that uses delayed feedback models to encode and then decode  information in 
temporal dynamics.

The delay-coupled reservoir  can also serve as a model system to inves-
tigate how two different delays might interact. In a previous study, Nieters 
et al. (2017) highlighted strange dependencies that arise if Equation 11.3 is 
expanded to

dx t ax t x t x t u t1 2, , . (11.4) 

Delays that are close to simple rational, or even integer multiples of each other, 
lead to a poorly performing reservoir computer—how close is too close is con-
trolled by the decay rate α of the exponential decay in the system. A too strong 
dependency of a sampling point onto its own history—the effect of choosing 
the τ2 = 2τ1—is detrimental. This delicate sensitivity to the choice of a second 
delayed feedback is reminiscent of the sensitivity to different delays in micro-
circuits mentioned earlier but is, of course, also an artifact of the discretized 
system used to model the activity at N sampling point with an analytic approxi-
mation and discretization. Future work must focus on a more realistic setting, 
where delays are distributed and continuous to investigate whether sharp tran-
sitions between well- and badly performing models also occur.

The takeaway from previous investigations into delay-coupled computation 
is that the added complexity can induce a complex temporal dynamics readout 
by an appropriate readout mechanism, which can benefi t computation signifi -
cantly. Reservoir computing is a compatible concept that embeds models, such 
as the delay-coupled reservoir, in the context of neural computation. More 
work is needed to connect the observed effects of delay coupling more closely 
with biological reality. Studies also highlight how complex neural networks 
may actually be that are subject to multiple delayed interaction effects. A possi-
ble perspective to study such systems abstractly is to connect single nodes with 
distributed delays recurrently in a reservoir, in the sense of a classical  recurrent 
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 network. In such a network of networks, each node itself can be regarded as a 
simple recurrent system (Figure 11.3).

Discussion

In this chapter, we have discussed several computational principles at the level 
of individual neurons and networks of neurons, and addressed the implications 
of delayed communication. These principles ranged from specifi cally tuning 
single neurons to implement well-defi ned computational tasks (i.e.,  indepen-
dent component analysis) to reservoir computing to implement computing 
based on randomly connected networks and random feature expansion. This 
diversity and wide range of functions can be viewed as either an overwhelm-
ing complexity that might just hide a key underlying unifying principle not yet 
uncovered, or a rich diversity used by the evolution as a large reservoir of tools 
and tricks to implement effi cient computational circuits. If the latter is true, 
then the simple question of which computational principle do we discard is not 
suffi cient. Instead, we need to address effi ciency in terms of performance and 
the use of resources, robustness to noise and structural changes, and generaliz-
ability of the computational principles for different tasks. The ultimate ques-
tion, however, remains essentially open: How does the cortex, or the brain, 
compute information? 
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