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Abstract

From interacting cellular components to networks of neurons and neural systems, in-
terconnected units comprise a fundamental organizing principle of the nervous system. 
Understanding how their patterns of connections and interactions give rise to the many 
functions of the nervous system is a primary goal of neuroscience. Recently, this pur-
suit has begun to benefi t from the development of new mathematical tools that can 
relate a system’s architecture to its dynamics and function. These tools, stemming from 
the broader fi eld of network science, have been used with increasing success to build 
models of neural systems across spatial scales and species. This chapter discusses the 
nature of network models in neuroscience. It begins with a review of model theory from 
a philosophical perspective to inform our view of networks as models of complex sys-
tems, in general, and of the brain, in particular. It summarizes the types of models that 
are frequently studied in network neuroscience along three primary dimensions: from 
data representations to  fi rst-principles theory, from biophysical realism to  functional 
phenomenology, and from elementary descriptions to coarse-grained approximations. 
Ways to validate these models are then considered, with a focus on approaches that 
perturb a system to probe its function. In closing, a description is provided of important 
frontiers in the construction of network models and their relevance for understanding 
increasingly complex functions of neural systems.

Introduction

The brain is composed of intricate networks that operate at many different 
levels of organization. At small spatial scales,  gene regulatory networks direct 
neuronal cell fate, and both chemical and electrical synapses defi ne the ac-
cessible routes of information transmission between neurons (Francis et al. 
2003). At intermediate spatial scales,  laminar architecture in cortex is accom-
panied by stereotyped interlaminar connectivity thought to support ensemble 
dynamics and resultant computations (Sherman et al. 2016). At even larger 
spatial scales, the anatomical locations of inter-areal projections display a 
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precise spatial arrangement associated with a diverse repertoire of functional 
processes (Betzel and Bassett 2018; Betzel et al. 2018).

Although networks are fundamental to brain structure, the complexity of 
these networks poses challenges to understanding their function. Unlike a 
sphere, which we can quickly guess to have the capacity to be rolled or thrown, 
a network—with its tangle of wires—defi es any simple conspectus. Thus, even 
though more than a century has passed since Camillo Golgi, Santiago Ramón 
y Cajal, and other neuroanatomists introduced to the world the intricate beauty 
of the networks of neurons that comprise our nervous system, our understand-
ing of how those networks give rise to  perception,  learning,  memory,  cogni-
tion, action, and other aspects of brain function remains incomplete.

To understand relationships between the brain’s networked architecture and 
its many functions, one fruitful set of approaches stems from the emerging 
fi eld of network science. This discipline addresses the study of systems whose 
structure, function, or dynamics depend upon the pattern of interconnections 
between units (Albert and Barabasi 2002). Network science is inherently in-
terdisciplinary, drawing on and integrating among recent advances in math-
ematics, physics, computer science, and engineering (Newman 2010, 2011). 
Although early work in the fi eld was largely devoted to the study of social 
systems, efforts over the last decade have focused increasingly on the study of 
neural systems across spatial scales, temporal scales, and species (Bullmore 
and Sporns 2009; Fornito et al. 2016; van den Heuvel et al. 2016). These newer 
efforts, collectively referred to as  network neuroscience, model neural systems 
as networks to distill the dependence of brain function and dysfunction on 
interconnection architecture (Bassett and Sporns 2017).

Here, we review recent work in network neuroscience that has been ap-
plied to our collective quest to understand the brain, and emphasize the diver-
sity of approaches that now fall under this general framework (Bassett et al. 
2018). Because network neuroscience is fundamentally a modeling endeavor, 
we begin with a broad philosophical perspective on  model theory. We then 
consider how networks are models, before turning to a discussion of the types 
of network models that are commonly used in neuroscience. Motivated by 
approaches to validate network models via prediction, we discuss the impor-
tance of perturbation-based techniques for understanding network function. 
We close by outlining important directions for future work to build, use, and 
validate network models in neuroscience.

Model Theory: A Philosophical Perspective

The term “model” can evoke quite different pictures in the mind’s eye:

• a small, inexact replica of a 1910 Schacht Roadster
• a miniature cityscape coarsely true to the form of Cambridge, England
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• Rodin’s “The Thinker”
• a contemporary reworking of a piece from Greek mythology (Eugenides 

2002)
• a person one wishes to emulate or an ideal one hopes to become
• IBM’s Watson
• a cerebral organoid—miniature organ in vitro (Huang et al. 2017)—or 

a human blinking eye-on-a-chip (Chan et al. 2015)
• a set of interdependent partial differential equations producing dynam-

ics reminiscent of a real-world system

In mentally traversing these diverse examples, one immediately realizes that 
the space of model types is exceedingly large, and one wonders whether it is 
even possible to defi ne what a model actually is, or what it is not.

The question of how to defi ne the term “model” is the focus of a branch of 
philosophy known as model theory, which aims to identify the essential ele-
ments that make models what they are and to disambiguate the characteristics 
that distinguish different types of models from one another (Gelfert 2016). At 
its most basic level, a model is a representation of one or more aspects of the 
world. It aims to increase understanding of what something is by measuring 
and imaging what something does. As such, models inherit a basic philosophi-
cal conundrum (Papineau 1987): What precisely is their relationship to the 
target systems they model, and from whence do they derive their truth value? 
Must they simply evidence functional  coherence and have pragmatic purchase, 
or must they also meaningfully correspond to what they represent? If so, how 
is that meaningfulness determined?

In science, at least four types of models have been recognized, each of 
which provide different answers to these questions: scalar, idealized, analogi-
cal, and phenomenological models (Frigg and Hartmann 2012; Hartmann and 
Frigg 2012).  Scalar models, much like the Roadster replica, either magnify 
or reduce their target systems. Idealized models abstract and isolate a limited 
set of features from their target systems. Analogical models highlight relevant 
similarities between two target systems, whether those similarities are shared 
properties or comparable structures. Finally, phenomenological models repre-
sent only the observable elements of their target systems, without postulating 
any theoretical explanation as to why those elements are what they are.

Recent work in model theory explores the intriguing possibility that all of 
these forms of scientifi c models are heuristic devices not unlike literary fi ctions 
(Suarez 2009; Frigg and Hunter 2010; Toon 2012). The models-as-fi ctions 
theory reconceptualizes models as fi ctional entities that aim to narrativize 
certain features of a target system (Barbrousse and Ludwig 2009; Godfrey-
Smith 2009; Frigg 2010a, b, c; Garcia-Carpintero 2010; Toon 2012; Frigg and 
Nguyen 2016, 2017). Accordingly, models—much like fi ctions—may imagi-
natively isolate and abstract or distort and exaggerate certain features of the 
world in such a way as to facilitate epistemic access (Elgin 2010). They may 
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creatively instantiate either analogical or phenomenological substructures 
of their target systems in order to crystallize insight. Scientifi c models are 
therefore subject to evaluation at the level of both artistry (clarity, elegance, 
originality) and function. Moreover, just as the literary tradition provides new 
fi ction with meaningful constraints in advance, the scientifi c community pro-
vides the parameters within which new models are developed and applied. 
Scientifi c models are, in this sense, accountable to the scientifi c communities 
that use them in the exploration of target systems that are already of particular 
value and interest (Almeder 2007). Finally, different sorts of models can be 
used together to build a multiscalar narrative architecture, modeling comple-
mentary features of a target system beside one another.

Whether used in isolation or in conjunction, scientifi c models illuminate 
the overarching structure of a target system precisely through the practice and 
provocation of creative imagination.

Networks as Models

The incipient challenge in modeling biological systems is to identify the most 
meaningful characteristics of the system that are distilled into a sensible rep-
resentation (Bellomo et al. 2015). That is, biological models are inherently 
idealized models of complex systems, and their construction requires identify-
ing fi rst the form and degree of abstraction to use. This process requires a set 
of value judgments (Which characteristics are most meaningful?) and a com-
mitment to epistemic cleanliness (What details of biology can we defensibly 
ignore?). These principles of valuation and purposeful ignorance are manifest 
even when exercising simple visual depictions, which arguably comprise the 
most impoverished of modeling approaches (Tufte 2001). One similarly faces 
choices of what to depict and what not to depict when building any simple 
mathematical representation of the system. For example, when building a dif-
ferential equation to represent a system, one must choose which processes to 
encapsulate or not in a variable.

The fundamental assumption of  network neuroscience is that idealized 
models of the brain should be constructed using analogical principles that 
focus on the networked architecture of the nervous system. As Cajal saw 
under his microscope, the nervous system is composed of individual neurons 
that are interconnected in complex ways. Accordingly, the earliest network 
models were idealized versions of this  network structure, with nodes repre-
senting neurons and edges representing the connections between them. More 
recently, network models have been developed within and across multiple 
spatial and temporal scales, at the level of interconnected neurons as well 
as involving networks of subcellular components, multicellular systems, or 
both. As detailed below, these models can also be phenomenological, based 
on measured elements of the nervous system, or more theory driven. Despite 

From “The Neocortex,” edited by W. Singer, T. J. Sejnowski and P. Rakic. 
Strüngmann Forum Reports, vol. 27, J. R. Lupp, series editor.  

Cambridge, MA: MIT Press. ISBN 978-0-262-04324-3



 Network Models in Neuroscience 113

this diversity, these models retain key features that can be understood in 
terms of their basic idealized and analogical structure: an architecture built 
using intercon nected units.

Such an architecture is typically encoded in a graph: an object composed 
of nodes, representing units of the system, and  edges, representing interac-
tions or links between those units (Bollobás 1979, 1985). Studies of graphs can 
be neatly separated into two categories: those who consider artifi cial graphs 
with arbitrary wiring principles (Harary 1969) and those who consider them 
to refl ect the architecture of a real system (Cohen and Havlin 2010). In both 
cases, one seeks to describe the mathematical properties of the graph with the 
goal of understanding the function of the system. The patterns of which units 
can and cannot (or do and do not) interact with one another can allow one to 
deduce where information might be relatively more densely or relatively more 
sparsely located, where vulnerability might exist to injury or perturbation, and 
where circumscribed instances of collective dynamics might emerge (Albert 
et al. 2000; Cisneros et al. 2002; Gomez-Gardenes et al. 2007; Simonsen et 
al. 2008).

In simple graphs, all units are represented by identical nodes, and all edges 
are represented as either existing or not existing (Figure 7.1). These repre-
sentations can be encoded using a binary weighting scheme. Furthermore, 
interactions are assumed to be bidirectional: if an edge exists between node 
i and node j, then an edge also exists between node j and node i. The very 
fi rst formal network models of neural systems employed such binary, undi-
rected graphs (Felleman and Van Essen 1991; Young et al. 1994; Scannell et 
al. 1995; Sporns et al. 2005; Achard et al. 2006; Kaiser and Hilgetag 2006). 
Nonetheless, it is relatively straightforward to adapt this encoding to a con-
tinuous weighting scheme, as well as to specify distinct weights for the edge 
from node i to node j, and for the edge from node j to node i. With the con-
tinued refi nement of empirical measurement techniques, the inclusion of edge 
weights in network models has become increasingly prevalent, providing 
richer insights into system function and dynamics (Rubinov and Sporns 2011; 
Markov et al. 2013; Oh et al. 2014; Bassett and Bullmore 2017; Betzel and 
Bassett 2018).

Network models are simple constructs. They can be used effectively to 
study social, biological, technological, and physical systems (Newman 2010). 
Yet this fl exibility is a marked reminder that the intuitions one gains from a 
network model depend strongly on what the nodes and edges are chosen to 
represent. A structural motif in a network of humans interlinked by friend-
ships can mean something quite different than the same structural motif in a 
network of neurons interlinked by synapses. Thus, in any endeavor that trans-
lates a complex system into a network model, it is critical to specify exactly 
what the nodes and edges (or more complicated model components) represent, 
and to ensure that interpretations are drawn in accordance with those choices 
(Butts 2009).
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Types of Network Models in Neuroscience

As a fi eld,  network neuroscience aims to build, exercise, and validate network 
models of neural systems with the explicit goal of better understanding brain 
structure and function, as well as  cognition, behavior, and disease (Sporns 
2014; Stam 2014; Medaglia et al. 2015; Fornito et al. 2017; Braun et al. 2018). 
The types of network models that are built share a similar analogical basis 
that emphasizes the importance of network-based architectures across spatial 
and temporal scales. These models, however, differ from one another in many 
important ways, which directly impact the sorts of inferences that can be justi-
fi ably drawn from them. Here we briefl y describe recent efforts to systematize 
the study of network models in neuroscience by organizing these similarities 
and differences according to three dimensions (see Figure 7.2) that refl ect the 
model categories described above (Bassett et al. 2018):
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Figure 7.1 Schematic of network models. Upper left: The simplest network model for 
neural systems is one that represents the pattern of connections (edges) between neural 
units (nodes). More sophisticated network models can be constructed by adding edge 
weights and node values, or explicit functional forms for their dynamics. Multilayer 
networks can be used to represent a set of interconnected networks; dynamic networks 
can be used to understand the reconfi guration of network systems over time. Bottom 
(left to right): Common measures of interest include degree (the number of edges ema-
nating from a node), clustering (related to the prevalence of triangles), hubness (related 
to a node’s infl uence), cavities (the absence of edges), communities (local groups of 
densely interconnected nodes), paths (which determine the potential for information 
transmission), shortcuts (one possible marker of global effi ciency of information trans-
mission), and core-periphery structure, which facilitates local integration of informa-
tion gathered from or sent to more sparsely connected areas.
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• their phenomenological basis, ranging from representations of mea-
sured phenomena to fi rst-principles theory;

• their target of idealization, from biophysical to functional features; and
• their  scalar focus, ranging from elementary descriptions to coarse-

grained approximations.

The dimension from data representation to fi rst-principles theory is arguably 
the most fundamental to network modeling efforts in neuroscience (Abbott 
2008). Modeling efforts of the former type begin with empirically acquired 
data. They then seek to build a representation of those data by stipulating which 
part of the data to represent as a network node, and which part of the data to 
represent as a network edge. Intuitively, the data representation provides an 
abstract, nonvisual depiction or description of the system (for examples, see 
Young et al. 1994; Scannell et al. 1995; Watts and Strogatz 1998; Hilgetag et 
al. 2000; Stam 2004; Sporns et al. 2005; Achard et al. 2006; De Vico Fallani 
et al. 2006; Kaiser and Hilgetag 2006; Micheloyannis et al. 2006; Bettencourt 
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Figure 7.2 Efforts to understand mechanisms of brain structure, function,  develop-
ment, and evolution in network neuroscience can be organized along three key dimen-
sions of model types. The fi rst dimension (a) extends from elementary descriptions 
to coarse-grained approximations. The second (b) extends from biophysical realism 
to  functional phenomenology. The third (c) extends from data representation to  fi rst-
principles theory.
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et al. 2007). In contrast, to make a prediction about system behavior either 
now or in the future, one must turn to models that instantiate fi rst-principles 
theories. These models combine a network with a mathematical expression 
specifying the dynamics of network nodes, network edges, or collections of 
nodes and/or edges (see, e.g., Ritter et al. 2013; Roy et al. 2014; Gu et al. 2015; 
Falcon et al. 2016; Bezgin et al. 2017; Breakspear 2017; Melozzi et al. 2017; 
Yan et al. 2017; Kim et al. 2018). Data-driven network models enjoy the ben-
efi ts of biological realism, whereas theory-based models have the capacity to 
make predictions and unearth function.

The dimension from biophysically to functionally defi ned features differen-
tiates models that are physical in nature from those that are statistical in nature. 
Network models with biophysical realism are composed of nodes that repre-
sent physical units, including neurons,  cortical columns, or Brodmann areas; 
and of edges that represent physical links, including synapses, projections, or 
white-matter tracts (see, e.g., Sporns et al. 2005; Kaiser et al. 2009; Bassett et 
al. 2010; Varshney et al. 2011; Nicosia et al. 2013; Oh et al. 2014). Network 
models addressing functional phenomenology are comprised of nodes and 
edges that are not necessarily physically instantiated but may instead be de-
fi ned as statistical abstractions (Achard et al. 2006; Bettencourt et al. 2007; 
Chu et al. 2012; Burns et al. 2014; van Diessen et al. 2015; Khambhati et al. 
2016). Common examples of such abstract edges are those that offer estimates 
of effective connectivity or  functional connectivity, the latter of which are also 
referred to as noise correlations (Brody 1999a, b; Friston 2011a). It is often 
important to distinguish between these two types of models because they have 
distinct utility in assessing a network’s physical constitution versus inferring 
its functional capacities.

The dimension from elementary descriptions to coarse-grained approxima-
tions is critical to support a multiscale understanding of brain structure, func-
tion, and dynamics. In general, network models can encode the organization 
of interconnections among cells, ensembles, cortical columns or subcortical 
nuclei, and large-scale brain areas. As evidenced by the diversity of scales 
represented in current empirical and theoretical investigations, no single level 
of description can provide a complete explanation for cognitive function and 
behavior. In many cases, however, it is worthwhile or at least practical to 
consider a single scale for a given study, and then to use insights gained at 
that scale to inform larger theories of multiscale function. The challenge in 
developing an appropriate network model at a particular scale is to ensure that 
the network nodes represent well-defi ned, discrete, non-overlapping units, 
and that network edges represent organic, irreducible relations (Butts 2009). 
Whereas models at the fi nal spatial scale consider elementary building blocks 
(Brody 1999b; Sautois et al. 2007; Tang et al. 2008; Feldt et al. 2011; Teller 
et al. 2014; Kim and Lim 2015; Kaiser 2017; Mahadevan et al. 2017; Betzel 
et al. 2018), models at the coarse spatial scale consider emergent functions 
(Breakspear 2017).
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Together, these complementary dimensions defi ne a three-dimensional 
space of network models that can be used to enhance our understanding of 
brain structure and function (Figure 7.3). Notably, prior modeling efforts 
have not been pursued with equal vigor in all volumes of this space, partly 
refl ecting historical factors and the changing state of neurotechnologies. 
Early work focused on large-scale network models of anatomy, which rep-
resent coarse-grained data representations with biophysical realism (Bassett 
and Bullmore 2017; Liao et al. 2017). Less well-studied are fi rst-principles 
theories of functional phenomenology, particularly among elementary units. 
With a marked increase in the pace of data acquisition and the capacity for 
data analysis, we anticipate increasing success developing network models 
at the center of the volume. In other words, we anticipate a wider array of 
studies that inform fi rst-principles theories with data, complement physical 
models with statistical  inferences on informational capacity, and build ex-
plicit multiscale accounts of network function. These multifaceted network 
models will enhance our ability to explain different parts, processes, or prin-
ciples of the nervous system.

Newly explorableFrontiers

Network model space
Coarse

Elementary

Functional

Data

Structural

Theory

Figure 7.3 Density of study in the three-dimensional space of network models. Den-
sity plot showing varying levels of study across the three-dimensional space of model 
types in network neuroscience. The center of the three-dimensional space (aubergine) 
is becoming increasingly accessible due to empirical and computational advances 
over the past few decades. The least well-studied space (periwinkle) represents fi rst-
principles theories of functional phenomenology at the elementary level of description. 
Clear volumes indicate spaces that are most commonly studied.
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Modeling Perturbations to Networks

When building  network models, we are often concerned with demonstrat-
ing their validity (Bassett et al. 2018). In prior work, we followed canoni-
cal principles for validating  animal models of disease to suggest that network 
models can display three distinct types of validity (McKinney and Bunney 
1969; Willner 1984; Shmueli 2010; Belzung and Lemoine 2011): descriptive, 
explanatory, and predictive. Intuitively, descriptive validity requires that the 
model resembles the system under study, a concept akin to face validity in 
animal models (McKinney and Bunney 1969; Willner 1984; Shmueli 2010; 
Belzung and Lemoine 2011; Willner 2017). For instance, a model with descrip-
tive validity might accurately refl ect the specifi c pattern of nodes and edges 
observed in anatomical or functional data. By contrast, explanatory validity 
requires that the model can be used to defi ne statistical tests, for example by 
assessing causal relations based on the network’s architecture. Finally, predic-
tive validity is attained when there is a correlation between a network model’s 
response to perturbation and an organism’s response to that same perturbation 
(Belzung and Lemoine 2011). Such perturbative studies can be operationalized 
using stimulation, lesion, ablation, or drugs.

Predictive validity is often the fi nal goal of any scientifi c domain of inquiry 
(Shneider 2009). Because predictive validity depends on understanding its re-
sponse to a perturbation, it is of interest to consider the different ways in which 
a network model can be perturbed. Recent work in the physics and engineering 
communities has begun to focus on the means by which the architecture of 
a network determines how perturbations affect its function. A simple way in 
which to parse these studies is to consider separately perturbations applied: (a) 
to a single node or to a single edge (“point perturbations”), (b) to a set of nodes 
or to a set of edges, and (c) across a fi xed area or volume of the network’s 
topology. In the context of network neuroscience, these different types of per-
turbations may be accessible to distinct empirical techniques and collectively 
could be used to better understand both endogenous and exogenous control, 
thereby informing clinical intervention (Tang and Bassett 2018).

From a modeling perspective, point perturbations are perhaps the simplest 
type to study. Initial modeling approaches focused on point perturbations in 
the form of node or edge removal. Referred to as virtual lesioning at times, this 
approach was developed to quantify the robustness of a network by estimating 
the difference between the value of a graph statistic estimated before node or 
edge removal, and the value of that same graph statistic estimated after node 
or  edge removal (see fi gure 1b in Dong et al. 2013). When nodes are removed 
at random, the approach is referred to as a random attack. When nodes are 
removed based on their topological role in the network, estimated using the 
values of various graph statistics such as degree and betweenness centrality, 
the approach is referred to as a targeted attack (Achard et al. 2006). These ap-
proaches have recently been used to better understand the impact of regional 
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dysfunction in  schizophrenia and  stroke (Alstott et al. 2009; Lynall et al. 2010; 
Lo et al. 2015).

Other approaches address how a perturbation of the activity of a node or 
edge can change the activity of other parts of the network. This approach 
is central to  network control theory and built on the foundations of linear 
systems theory (Kailath 1980; Motter 2015). Here one considers the pattern 
of interconnections between units as well as a model of dynamics that speci-
fi es how the activity at one node can travel along edges to other nodes in the 
graph (Tang and Bassett 2018). By modeling both the connectivity and the 
dynamics, one can identify “driver” nodes with time-dependent control that 
can guide the system’s activity (Liu et al. 2011). A recent application of these 
techniques to the connectome of Caenorhabditis elegans demonstrated that 
a particular network model had striking validity in predicting the effects of 
single-cell ablasions on the organism (Yan et al. 2017). The approach can also 
be extended beyond the identifi cation of drivers controlling all dynamics to 
the identifi cation of drivers controlling specifi c dynamics (Pasqualetti et al. 
2014). The specifi city of this extension allows for the study of unique control 
strategies within neural systems. A recent application of this technique pro-
vided an explanation for the anatomical location of areas of the brain involved 
in executive function, as those most capable of enacting modal controllability 
(Gu et al. 2015).

Despite their analytical tractability, point perturbations can be the most dif-
fi cult to enact and interpret in the context of real neural systems. On a concep-
tual level, a single, functional node or edge used in a model might not have an 
obvious, well-defi ned anatomical substrate in the brain to target. On a practical 
level, even given a well-defi ned target, it may not be possible to perturb cleanly 
just that target, given the lack of complete specifi city associated with current 
microstimulation, optogenetic, and pharmacological methods. Nonetheless, 
point perturbations represent a useful starting point in considering the valida-
tion of network models.

Moving beyond point perturbations, it is also of interest to consider pertur-
bation to multiple points in the network, or to entire areas or volumes of neural 
systems. Intuitively, multipoint control is a natural refl ection of circuit activity, 
where several areas may be activated simultaneously to orchestrate a change 
in communication or dynamics (Palmigiano et al. 2017). Multipoint control 
could also be fruitfully applied to the development of stimulation therapies to 
quiet seizure dynamics using implantable devices (Ehrens et al. 2015; Taylor 
et al. 2015; De Ridder et al. 2017; Jobst et al. 2017). Fortunately, the general 
network control framework is readily extended to account for the activity of 
multiple control points simultaneously, and can be used to model the propaga-
tion of stimulation directly along white matter tracts to predict distant effects 
on regional activity (Muldoon et al. 2016; Stiso et al. 2018). Extending these 
tools to affect control over continuous areas or volumes of a network is more 
diffi cult and remains an important area for future work. Progress in this area 
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is critical for extending network models to account for other chemical mecha-
nisms of transcellular communication and the effects of glia, neuromodulatory 
systems, and other mechanisms on  brain function and behavior (Borroto-
Escuela et al. 2015; Safaai et al. 2015; Bruinsma et al. 2018; Savtchouk and 
Volterra 2018).

Modeling Network Growth and Evolution

The study of network perturbations, while useful for understanding endog-
enous and exogenous mechanisms of control, is also pertinent to an under-
standing of how neural systems came to be, how they develop, and how they 
age. A change in  gene expression can alter the natural progression of cell fate 
from pluripotent stem cell through neuroprogenitor cell and eventually neuron 
(Mahadevan et al. 2017).

A fl uctuation in chemical gradients can comprise a perturbation that alters 
the course of  neuronal migration and, by extension, the location and density of 
synapses (Wrobel and Sundararaghavan 2014). In fully developed adult neu-
rons, Hebb’s rule essentially postulates that perturbations to neuronal fi ring 
can alter cellular-level network architecture (Bi and Poo 2001). Even at the 
large scale in humans, long-term training can induce changes in white mat-
ter architecture evident in noninvasive neuroimaging (Scholz et al. 2009). 
Understanding how perturbations of the organism or part of the organism over 
both short and long timescales affect network growth and evolution is an im-
portant open area of research.

Some progress has been made over the last few years in constructing so-
called  generative network models. Such models stipulate a  wiring rule in the 
hope of producing a network architecture that displays topological or func-
tional properties that are similar to those observed in the networks represent-
ing real systems (Betzel and Bassett 2017). The basic idea is that a wiring rule 
which produces a network topology similar to that observed in the real system 
is a candidate mechanism for network generation. The inference is made stron-
ger if the wiring rule also displays characteristics thought to be consistent with 
biology, such as parsimony and effi ciency. A common way of testing the prag-
matic utility of the generative network model is to determine if it can be used 
to make out-of-sample predictions about held-out network data.

Generative network models tend to be built in one of three types: sin-
gle-shot models, growth models, or developmental models (Figure 7.4). A 
single-shot model specifi es a form for the connection probabilities, from 
which all edges and their weights are then drawn (Vertes et al. 2012, 2014; 
Beul et al. 2015, 2017; Betzel et al. 2016; Hilgetag et al. 2016). A growth 
model specifi es a time-dependent wiring rule that indicates how nodes and 
possibly even edges are added over time (Klimm et al. 2014). Developmental 
models extend the biological realism of the effort even farther by specifying 
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wiring rules in which the timescales of the model match the timescales of de-
velopment in the organism under study (Nicosia et al. 2013). Together, these 
three types of generative network models vary in the timescale over which 
they operate and in their neurobiological plausibility.

Recently, generative network models have been developed and applied to 
explain neurophysiological and neuroanatomical data across both elementary 
descriptions and coarse-grained approximations (Beul et al. 2015, 2017). For 
example, a particularly striking single-shot model of the  neural connectome of 
the nematode C. elegans demonstrated that a wiring rule based on the random 
outgrowth of axons, in combination with a competition for available space at 
the target neuron, was able to recapitulate the empirical network’s edge length 
distribution (Kaiser et al. 2009). A developmental model of the same organ-
ism combined information regarding the pattern of interconnectivity between 
neurons with information regarding the birth times of neurons and their spatial 
locations (Nicosia et al. 2013). This study provided compelling evidence for 
a trade-off between the network’s topology and cost that appears to be dif-
ferentially negotiated over different developmental time periods. With a few 
exceptions (Vertes et al. 2012), most generative network models have focused 
on data representations more so than  fi rst-principles theories, and biophysical 
realism more so than  functional phenomenology. Expanding efforts to fi ll the 

Model timescale

t = 1 t = 2 t = 3 t = 4

Growth models

i
j

i
j

Increasing probability
of connection forming

“Single shot”
Developmental models

Neurobiologically plausible

Figure 7.4 Distinct classes of generative network models. Generative network mod-
els exist in three main classes that differ in the timescales over which they operate. 
Single-shot models specify a functional form for the probability with which any two 
nodes are linked with one another. Growth models specify rules by which nodes and/or 
edges are added to the network over time, which is commonly discretized in arbitrary 
units. Developmental models specify wiring rules with fi xed timescales in actual units 
of seconds, minutes, days, months, years, etc., in an effort to match the true growth 
mechanisms of an organism better. From Betzel and Bassett (2017).
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full space of model types will be an important area for future work in genera-
tive modeling.

Future Directions

In considering the future utility  of network models for advancing our un-
derstanding of neural systems, it is worth pointing out that the models used 
to date are relatively simple from a mathematical perspective. It remains an 
open question whether more complex network models might prove useful 
or merely obfuscate  inference. To address this question, one could rationally 
assess whether some aspect of a known neurophysiological process remains 
unaccounted for by existing models. For example, to increase descriptive 
validity, one might wish to build an annotated network, where nodes can be 
assigned values or properties, refl ecting for example cerebral glucose me-
tabolism estimates from fl uorodeoxyglucose (FDG)-positron emission to-
mography (PET), blood oxygen level dependent (BOLD) contrast imaging, 
magnetoencephalographic (MEG) or electroencephalographic (EEG) power, 
gray matter volume or cortical thickness, or cytoarchitectonic properties 
(Murphy et al. 2016; Newman and Clauset 2016). Furthermore, to increase 
explanatory validity, one might wish to build multilayer networks where the 
nodes and edges in each layer are obtained from different types of measure-
ments (Kivel et al. 2014; Tewarie et al. 2014; Yu et al. 2016), and where 
the architecture of the network is allowed to vary over time in concert with 
system function (Holme and Saramaki 2012; Kopell et al. 2014; Breakspear 
2017; Khambhati et al. 2017; Sizemore and Bassett 2018). Such richer mod-
els could allow one to test how network dynamics at one time point or in one 
modality might cause a change in network dynamics at another time point or 
in another modality.

A second way in which to address the question of whether more complex 
network models might prove useful is to consider whether the testing of a 
particular hypothesis requires a novel network model. For instance, recent ef-
forts have provided initial evidence that some higher-order, non-pairwise inter-
actions occur between neurons and between large-scale brain areas (Ganmor 
et al. 2011; Lord et al. 2016). Critically, all of the network models we have 
discussed here are based on pairwise interactions and cannot directly account 
for non-pairwise interactions (Petri et al. 2014; Sizemore et al. 2018). Tools 
that have been developed in the applied mathematics community that can en-
code and characterize higher-order relations include hypergraphs (an edge can 
link any number of vertices) and simplicial complexes (higher-order interac-
tion terms become fundamental units) (Bassett et al. 2014; Giusti et al. 2016). 
These generalizations of graphs may be critical for an accurate understanding 
of neuronal codes and associated computations both at micro- and macroscales 
(Curto et al. 2013; Reimann et al. 2017; Sizemore et al. 2017). As the fi eld 
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moves beyond univariate accounts to postulate more network-based hypoth-
eses, richer network models may be required.

Conclusion

From cellular to regional scales, neural circuitry is an interconnected system. 
In such a system, network modeling is a particularly useful approach for dis-
tilling interconnection patterns into tractable mathematical objects that are 
amenable to theory. Here we discussed the nature of network models, which 
share a similar networked architecture that is justifi ed in terms of its analogies 
to brain structure but then differ along several dimensions: from data repre-
sentations to  fi rst-principles theory, abstractions that emphasize biophysical 
or functional features, and different scales from elementary descriptions to 
coarse-grained approximations. We paid particular attention to models that 
have been developed to better understand the response of networked systems 
to perturbation enacted at a single point, at multiple points, or across extended 
areas or volumes of the organism. We also offered an extended discussion of 
generative network models that seek to identify candidate wiring mechanisms 
for  circuit  evolution or development. We suggest that network models are par-
ticularly appropriate for neural systems. Accordingly, future advances in our 
understanding of computation and cognition will depend on the expansion of 
these models in mathematical sophistication and the development of richer, 
network-based hypothesis of brain structure, function, and dynamics.
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