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 Brain Networks
How Many Types Are There?

Marcus E. Raichle, Ryan V. Raut, and Anish Mitra

Abstract

Unraveling the organizational structure of the brain has, in large measure, been reduc-
tionist in nature. While this has revealed, in ever-increasing detail, the fi ne structure of 
the brain, it does leave less directly addressed the beautifully integrated nature of brain 
function. Views of the functional organization of the brain should include a unitary 
perspective, despite the diversity of its constituent parts. This chapter focuses on recent 
observations from the authors’ laboratory, which point to the value of an integrated ap-
proach as well as to answer the assigned title question: arguably, the brain consists of a 
single network with functional diversity. 

Introduction

Categorizing network types in the brain requires knowledge of the context in 
which the term networks is applied. Generally, the term emerges from research 
that associates component operations and behavior with identifi able brain parts 
and their interactions, ranging from the cellular and molecular to a whole brain 
level of analysis (Bassett and Sporns 2017). The breadth of extant work on 
this subject is exemplifi ed by the observation that a current PubMed search 
of the terms “brain” and “networks” presently yields over 33,000 citations. 
Taking a whole-brain perspective, restricting the search to “brain networks” 
and “fMRI” yields approximately 1,500 citations per year, over the past three 
years. Remarkably, this represents ~40% of the total citations for “brain” and 
“networks” over the same period of time. Here, we focus on this whole-brain 
or large-scale perspective that now characterizes a signifi cant fraction of hu-
man brain imaging research and, more generally, research on  functional brain 
organization. 

From this large-scale perspective, a generally agreed upon list of cortical 
networks has emerged with names such as somatomotor, visual, dorsal, and 
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ventral attention, cingulo-opercular and frontoparietal control, salience, and 
default mode (e.g., Power et al. 2011; Yeo et al. 2011; Hacker et al. 2013). 
Research seeking an understanding of the large-scale organization of these 
networks in the mammalian brain has included anatomically and theoreti-
cally based network analyses (e.g., van den Heuvel et al. 2016) and genet-
ics (Richiardi et al. 2015; Ge et al. 2017) as well as resting-state functional 
magnetic resonance imaging (fMRI) in humans (Raichle 2011), nonhuman pri-
mates (Vincent et al. 2007), and rodents (Lu et al. 2012; Stafford et al. 2014). 
While the nature of the relationships within and among these networks has 
not been ignored, the primary emphasis has been on their parcellation; that is, 
how crisp the boundaries delineating the networks are and how many cortical 
parcels exist (e.g., Power et al. 2011; Glasser et al. 2016). 

Our objective is to outline a unifying, functional framework within which 
individually identifi able components (networks/systems) arise and communi-
cate with one another. There are two major elements to our approach. 

The fi rst element is to specify the biological underpinnings of the fMRI 
blood oxygen level dependent (BOLD) signal. The logic behind doing so is 
that this signal has become an extremely attractive window on the brain’s 
large-scale, functional organization. Nonetheless, an agreed upon understand-
ing of its underlying neurophysiology has been lacking. Many have asserted 
that infra-slow (< 0.1 Hz) fMRI signals are simply a low-pass fi lter of the 
brain’s overall neurophysiology (e.g., de Zwart et al. 2005; Logothetis 2008). 
In contrast, we have recently shown (Mitra et al. 2018) that the signal is a 
very specifi c representation of the brain’s  infra-slow activity, and thus it offers 
a unique window on an element of brain neurophysiology that is critical for 
maintaining and orchestrating the brain’s large-scale, functional organization.

The second element of our approach is to utilize functional information 
available from the spontaneous, ongoing activity of the brain. The logic behind 
this choice is that most of brain energy resources are devoted to this activity, 
well over 90% (Raichle and Mintun 2006). Furthermore, it has become a major 
source of information related to the functional organization of the mammalian 
brain in health and disease.

The fMRI BOLD Signal

The  fMRI BOLD signal has a long and storied history. It is based on the prop-
erties of oxygenated hemoglobin in a magnetic fi eld, a property fi rst hinted at 
by Michael Faraday in 1846 (Faraday 1933), formally discovered by Linus 
Pauling and Charles Coryell in 1936 (Pauling and Coryell 1936), and rein-
troduced by Keith Thulborn and colleagues in 1982 (Thulborn et al. 1982). 
Deoxyhemoglobin, being paramagnetic, disrupts a magnetic fi eld and causes 
a loss of signal in an MRI scanner. Therefore, veins will prominently appear 
in MRI images as areas of signal loss. Task-induced increases (decreases) in 
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regional brain blood fl ow are not accompanied by proportional changes in oxy-
gen consumption (Fox and Raichle 1986), thus producing localized decreases 
(increases) in deoxyhemoglobin. Combining this knowledge with the effect of 
deoxyhemoglobin on the MRI signal, Seiji Ogawa and colleagues proposed at 
the Bell Laboratories an in vivo MRI strategy for brain mapping based on what 
they dubbed the BOLD signal (Ogawa et al. 1990). Their proposal launched 
fMRI as the primary tool in cognitive neuroscience. 

The physics of the fMRI BOLD signal is well understood. The fMRI signal 
is, quite simply, based on the ratio of oxy- to deoxyhemoglobin in the brain 
vasculature, which varies both spontaneously, refl ecting the brain’s ongoing 
intrinsic activity, and predictably in response to task-induced changes in brain 
activity (see fi gure 6 in Raichle and Mintun 2006). The relationship of the 
BOLD signal to the underlying neurophysiology of the brain, however, has 
been a matter of considerable debate. At the heart of this discourse has been 
the variably articulated idea that the fMRI BOLD signal is a vascular, low-pass 
fi lter of brain neurophysiology writ large (e.g., de Zwart et al. 2005; Logothetis 
2008). The slow temporal dynamics of the BOLD signal (stimulus to onset 
~2 sec and spontaneous frequency of < 0.1 Hz) has been attributed to the re-
sponse time of the vasculature, a phenomenon often referred to as neurovas-
cular coupling. 

The debate over  neurovascular  coupling frequently ignores the possibility 
that there is an element of the brain’s neurophysiology that does correspond 
to the temporal scale of the fMRI BOLD signal, which is predominantly < 0.1 
Hz. This has been dubbed infra-slow activity (ISA) (for a superb scientifi c and 
historical review, see Palva and Palva 2012). In support of this view, recent 
studies in humans (Mitra et al. 2014; Mitra et al. 2015) and mice (Matsui et 
al. 2016; Vanni et al. 2017) report that ISA, as measured by BOLD or calcium 
imaging, travels slowly through the cerebral cortex along stereotypical spatio-
temporal trajectories. Spontaneous BOLD signals have also been linked to ISA 
in local fi eld potentials (Leopold et al. 2003; He et al. 2008; Pan et al. 2013). 
Together, these fi ndings suggest the possibility of a distinct ISA process that 
moves dynamically through the brain to establish a systems-level organization 
that is captured in the  resting-state BOLD signal. 

Key questions, however, remained unanswered. Is ISA, especially its spa-
tiotemporal trajectory through the cortex, distinct from other frequencies, such 
as delta activity (1–4 Hz)? Do the spatiotemporal trajectories of BOLD signals 
correspond specifi cally to ISA or do they represent higher frequencies as well? 
Finally, does ISA travel through specifi c cortical layers as do other distinct 
spectral bands, such as  gamma (> 40 Hz), alpha (8–12 Hz), and delta? 

Recently we addressed these questions in mice (Mitra et al. 2018) using 
whole cortex, calcium/hemoglobin imaging, and laminar electrophysiology 
(Figure 6.1). With calcium/hemoglobin imaging we showed that ISA in each 
of these modalities travels through the cortex along stereotypical spatiotempo-
ral trajectories that are state dependent (wake versus anesthesia) and distinct 

From “The Neocortex,” edited by W. Singer, T. J. Sejnowski and P. Rakic. 
Strüngmann Forum Reports, vol. 27, J. R. Lupp, series editor.  

Cambridge, MA: MIT Press. ISBN 978-0-262-04324-3



100  

IS
A

D
el

ta

1 2 3 4 5 6

1 2 3 4 5 6

I

II/
III

1 2 3 4 5 6

1 2 3 4 5 6

I II/
III

IV

GC
aM

P6
 (C

alc
ium

)
He

mo
glo

bin
 (B

OL
D)IS

A 
(<

0.
1 

H
z)

GC
aM

P6
 (C

alc
ium

)

D
el

ta
 (1

-4
 H

z)

6 7 8 9 10 11 12

6 7 8 9 10 11 12 13

IV V

6 7 8 9 10 11 12

6 7 8 9 10 11 12 13

V V
I

Wake

14 15 16
V

I

1 2
1 2

I
1 2

1 2
I

14 15 16
-3

m
s

+3
m

s
–0

.2
5s

+0
.2

5s

2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9

II/
III

IV V

2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9

II/
III IV V

Anesthesia

10 11 12

10 11 12 13 14 15 16

V
I

10 11 12

10 11 12 13 14 15 16

V V
I

–0
.2

5s
+0

.2
5s

–5
0m

s
+5

0m
s

Motor Visual

Motor Visual

Motor Visual

Motor Visual

(a
)

(b
)

Mo
tor

Mo
tor

Mo
tor

Mo
tor

Vi
su

al

Vi
su

al

Vi
su

al

Vi
su

al

Fi
gu

re
 6

.1
 

U
til

iz
in

g 
w

ho
le

 c
or

te
x 

ca
lc

iu
m

 fl 
uo

re
sc

en
ce

 a
nd

 h
em

og
lo

bi
n 

ab
so

rb
an

ce
 o

pt
ic

al
 im

ag
in

g 
(a

) a
nd

 c
or

tic
al

, l
am

in
ar

 e
le

ct
ro

ph
ys

io
lo

gy
 

(b
) i

n 
aw

ak
e (

to
p)

 an
d 

an
es

th
et

iz
ed

 (b
ot

to
m

) m
ic

e,
 w

e e
xp

lo
re

d 
th

e t
em

po
ra

l a
nd

 sp
at

ia
l d

yn
am

ic
s o

f t
he

 b
ra

in
’s

 in
fr

a-
sl

ow
 ac

tiv
ity

 (I
SA

) (
fr

eq
ue

n-
ci

es
 <

 0
.1

 H
z)

 a
nd

 c
om

pa
re

d 
IS

A
 to

 a
ct

iv
ity

 in
 th

e 
de

lta
 fr

eq
ue

nc
y 

ra
ng

e 
(1

–4
 H

z)
. H

em
og

lo
bi

n 
im

ag
in

g 
em

pl
oy

ed
 h

er
e 

is
 se

ns
iti

ve
 to

 th
e 

ra
tio

 o
f 

ox
y-

 to
 d

eo
xy

he
m

og
lo

bi
n 

an
d 

th
us

 e
qu

iv
al

en
t t

o 
th

e 
fM

R
I B

O
LD

 si
gn

al
. (

a)
 In

 th
e 

w
ak

e 
st

at
e,

 IS
A

 tr
av

el
s f

ro
m

 th
e 

 m
ot

or
 c

or
te

x 
(a

nt
er

io
r)

 to
 th

e 
vi

su
al

  c
or

te
x 

(p
os

te
rio

r)
 in

 a
 p

at
te

rn
 re

ve
al

ed
 a

lm
os

t i
de

nt
ic

al
ly

 b
y 

ca
lc

iu
m

 fl 
uo

re
sc

en
ce

 a
nd

 h
em

og
lo

bi
n 

ab
so

rb
an

ce
. U

nd
er

 g
en

er
al

 a
ne

st
he

si
a 

th
is

 p
at

te
rn

 re
ve

rs
es

 d
ire

ct
io

n.
 T

hi
s i

s t
o 

be
 c

on
tra

st
ed

 w
ith

 c
al

ci
um

 fl 
uo

re
sc

en
ce

 in
 th

e 
de

lta
 fr

eq
ue

nc
y 

ra
ng

e,
 w

hi
ch

 re
ve

al
s m

ov
em

en
t i

n 
a 

di
re

c-
tio

n 
op

po
si

te
 to

 th
at

 in
 th

e 
IS

A
 ra

ng
e 

in
 th

e 
w

ak
e 

an
d 

an
es

th
et

iz
ed

 s
ta

te
. (

b)
 L

am
in

ar
 p

hy
si

ol
og

y 
fu

rth
er

 re
ve

al
s 

th
e 

un
iq

ue
 d

is
tin

ct
io

ns
 b

et
w

ee
n 

IS
A

 a
nd

 d
el

ta
 a

ct
iv

ity
 in

 th
e 

 m
ou

se
 c

or
te

x.
 C

om
pl

et
e 

ex
pe

rim
en

ta
l d

et
ai

ls
 b

eh
in

d 
th

e 
m

at
er

ia
l d

ep
ic

te
d 

in
 th

is
 fi 

gu
re

 a
re

 a
va

ila
bl

e 
in

 M
itr

a 
et

 a
l. 

(2
01

8)
, f

ro
m

 w
hi

ch
 th

is
 fi 

gu
re

 w
as

 a
da

pt
ed

. 

From “The Neocortex,” edited by W. Singer, T. J. Sejnowski and P. Rakic. 
Strüngmann Forum Reports, vol. 27, J. R. Lupp, series editor.  

Cambridge, MA: MIT Press. ISBN 978-0-262-04324-3



 Brain Networks: How Many Types Are There? 101

from trajectories in delta (Figure 6.1a). This confi rmed our earlier work in 
humans which compared wake and sleep states (Mitra et al. 2016). Moreover, 
our  mouse laminar electrophysiology reveals that ISA travels through specifi c 
cortical layers and exhibits cross-laminar temporal dynamics distinct from 
higher-frequency local fi eld potential activity (Figure 6.1b). A corollary to this 
latter observation is the possibility that resting-state fMRI refl ects heretofore 
unsuspected frequency and  laminar specifi city. 

From the perspective presented above, we now turn to a discussion of re-
search that has utilized resting-state fMRI BOLD imaging of spontaneous 
brain activity to delineate the functional organization of the human brain. We 
posit that what is being revealed is the role of a unique component of brain 
neurophysiology, namely ISA.

Resting-State Functional Connectivity 

In 1995, Bharat Biswal et al. (1995) reported that spontaneous fl uctuations 
in the fMRI BOLD signal in the motor hand area of one cerebral hemisphere 
correlated with  spontaneous activity in the motor hand area of the other hemi-
sphere. Despite earlier work that made the fi ndings of Biswal and colleagues 
plausible (e.g., Vern et al. 1997), there were initial doubts about the importance 
of their fi ndings. Gradually, the skepticism abated in the face of a fl urry of ob-
servations that this strategy, when applied to other areas of the brain, revealed 
a large-scale functional organization that mirrored that known from task-based 
fMRI and its predecessor, positron emission tomography or PET (Figure 6.2). 
This represented a paradigm shift in the imaging of the human brain in health 
and disease across the life span (for reviews, see Fox and Raichle 2007; Raichle 
2009). The work has now been extended to nonhuman primates (Vincent et al. 
2007) as well as other species, including rodents (Lu et al. 2012; Stafford et 
al. 2014). 

The stunning appeal of the maps of  resting-state  functional connectivity 
(Figure 6.2c) led to questions about their stationarity and whether it might be 
possible to understand how the various systems communicated with each other 
in various states (e.g., sleep versus wake as well as during task performance). 
As depicted in Figure 6.2d, not only do individual systems exhibit strong in-
ternal correlation structures but in the off-diagonal elements of this correla-
tion matrix there are, not surprisingly, defi nite hints of relationships among 
the various systems. For example, the well-known anticorrelations (Fox et al. 
2005) between the  dorsal  attention  network (DA in Figure 6.2) and the default 
mode network (DM in Figure 6.2) can be faintly seen in the upper right-hand 
corner of the matrix. Animating this matrix produces a very seductive picture 
of changing relationships within and among the constituent systems over time. 
Not surprisingly, this spawned an active area of research, known as  dynamic 
functional connectivity (Hutchison et al. 2013), which has been criticized for 
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being very artifact prone due to such things as subject movement, to which 
 resting-state  functional connectivity is exquisitely sensitive (Power et al. 2012; 
Laumann et al. 2016; Liegeois et al. 2017). Because of these concerns, we 
elected to approach the question of the spatial and  temporal aspects of relation-
ships within and among resting-state networks in a different manner. 

Lag Structure in Resting-State fMRI

To explore how spatially segregated networks such as those illustrated in 
Figure 6.2c communicate, we elected to examine the latency structure of the 
spontaneous, correlated fl uctuations in the fMRI BOLD signal among nodes 
within and between networks (Mitra et al. 2014). This deviates from the 
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Figure 6.2 From a series of fMRI BOLD images obtained every 2.3 sec from indi-
viduals in a relaxed but awake state (a), one can obtain a time-activity curve (b) from se-
lected brain regions. When the region of interest lies within a known brain network (c), 
correlations with this time-activity curve outside of this region of interest delineate the 
spatial topography of the network. This is known as resting-state functional connectiv-
ity. A symmetric correlation matrix (d) of these relationships can be constructed exhibit-
ing correlations within networks along the diagonal and correlations among networks 
in the off-diagonal blocks. The network abbreviations utilized in this and subsequent 
fi gures include the  dorsal  attention (DA), ventral attention (VA), somatomotor (SM), 
visual (VIS), frontoparietal control (FPC),  language (LAN), and default mode (DM). 
Elements of this fi gure were adapted from Raichle (2011). 
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standard practice of assuming no latency, or zero lag functional connectivity. 
Despite the stunning results obtained with the  zero lag  functional connectivity 
approach, it tacitly ignores the existence of a temporal component within the 
spatial structure of these correlations. Our approach was to seek evidence of 
this temporal component.

Studying the interregional lags of a poorly sampled signal, such as spon-
taneous fl uctuations in fMRI BOLD, might seem like a dubious undertaking. 
However, as illustrated in Figure 6.3a, as well as in articles that delineated and 
defended the details of our approach (Mitra et al. 2014; Mitra et al. 2015), it 
worked out quite well. One of the keys to our success was the availability of 
a very large, high-quality data set, The  Brain Genomics Superstruct Project 
(Buckner et al. 2014). Our work revealed that intrinsic activity propagates both 
through and across networks on a timescale of ~ 1 sec (Figure 6.3b), such 
that no network is entirely early or late compared to the others (Figure 6.3c). 
Instead, each network has components that send signals to the rest of the brain 
as well as components that receive signals from the rest of the brain. 
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is the value at which the absolute value of the cross-covariance function is maximal 
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the temporal sampling density. (b) Three-dimensional (top) and surface-based (bottom) 
latency projection maps from 692 subjects. Projection maps are computed by taking a 
column-wise average of the full time-delay matrix, shown in (c); thus, the value at each 
region indicates the region’s mean  temporal relationship (blue, early; red, late) with the 
rest of the brain. (c) The relationship of latency to  resting-state networks (abbreviations 
as in Figure 6.2) shown in a matrix format ordered by resting-state membership. Note 
the wide range of latencies within resting-state networks as well as among networks 
as depicted in the off-diagonal blocks. Adapted from Mitra et al. (2014) and Mitra and 
Raichle (2016). 
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As stressed above,  zero lag resting  functional connectivity reveals, in a 
remarkably consistent manner, the basic large-scale  network structure of the 
human brain (Figure 6.2c). Examining the latency structure of the very same 
signal that gave us this result (Figure 6.3b), we observe propagation of this sig-
nal both within and among networks that appears to cross network boundaries 
(Figure 6.2c). How can this be? 

Demystifying the propagation pattern of the spontaneous fMRI BOLD sig-
nal took a major step forward through the discovery of lag threads (Mitra et al. 
2015). The spontaneous  fMRI BOLD signal that is depicted in Figure 6.3b and 
6.3c, in terms of its spatial latency, consists of an estimated eight orthogonal 
components, which we dubbed lag threads. Using a data set of 1,376 subjects 
(Buckner et al. 2014) which were randomly assigned to two groups of 688 
subjects, and employing preprocessing and computational methods detailed 
elsewhere (Mitra et al. 2015), we were able to show, reproducibly, that there 
are at least eight lag threads characterized by distinct “sources” and “sinks.” 

Still, the fact that the lag structure of spontaneous fMRI BOLD signal 
was multidimensional did not fully explain how this signal could function-
ally delineate several spatially non-overlapping networks of correlated activ-
ity, such as those shown in Figure 6.2c. What was the missing feature of the 
lag threads? The answer was what we termed motifs: sets of regions whose 
temporal ordering is consistent across lag threads. Defi ned in this way, such 
motifs were found to correspond to conventional resting-state networks. This 
implies that large-scale networks are characterized by unidirectional propaga-
tion. Metaphorically speaking, motifs and the networks they delineate repre-
sent one-way streets for  ISA. From  this perspective it can be convincingly 
shown that the zero lag temporal correlation network structure of resting-state 
fMRI (Figure 6.2d) can arise from the structured, unidirectional propagation 
of ISA through specifi c sets of regions (networks); sets of regions that do not 
follow such structured ordering across lag threads do not manifest strongly 
correlated signals (Mitra et al. 2015). The sources and sinks of fMRI BOLD 
and ISA assume added signifi cance in considering the relationships among 
functionally defi ned networks. 

Communication among Networks

 If motifs describe the movement of ISA within functionally identifi ed brain net-
works, how can we characterize the relationships among networks? Although 
the precise boundaries of networks are arbitrary, functional networks by defi ni-
tion comprise positively correlated regions. Thus, we may decompose the full 
time-delay matrix (Figure 6.3c) into region pairs that are positively or nega-
tively correlated (Figure 6.4a, b); in doing so, we are left with, respectively, 
predominantly within-network relationships and exclusively between-network 
relationships. At one extreme is the purely anticorrelated relationship between 
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the default mode network and the dorsal  attention  network, consistent with 
previous work on their relationship (Fox et al. 2005). More generally, however, 
the relationships among conventional networks are a combination of positive 
and negative correlations. 

An intriguing feature of activity shared between networks is that it fol-
lows a similar spatiotemporal trajectory to within-network propagation. 
Thus, cross-network signals begin at the earliest nodes of each network 
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Figure 6.4 Decomposing the time-delay matrix depicted in Figure 6.3c into posi-
tively (a) and negatively (b) correlated voxel pairs provides additional details about the 
spatiotemporal relationships of the spontaneous fMRI BOLD signal within (diagonal) 
and among (off-diagonal) large-scale brain networks. Notice that  resting-state networks 
contain only positive correlations, by defi nition. Positive correlations also exist outside 
of the resting-state networks as inter-network relations comprise both positive and neg-
ative correlations; however, focusing exclusively on lags among negatively correlated 
regions (b) permits analysis of strictly inter-network signaling (c). Illustrated here is the 
general relationship of lag trajectories within and between the default mode network 
(DM) and the  dorsal attention network (DA). Within each network there is an early 
and late temporal gradient. In the DM this goes from the retrosplenial cortex (RSC; 
posterior) to the medial  prefrontal cortex (mPFC; anterior). In the DA it extends from 
the frontal eye fi elds (FEF; anterior) to the intraparietal sulcus (IPS; posterior). Finally, 
the communication between the two systems occurs via their earliest components (i.e., 
RSC to FEF). More generally, the similarity of on- and off-diagonal blocks within each 
column of the time-delay matrix in Figure 6.3c reveals shared trajectories of within- 
and between-network signals. Adapted from Mitra and Raichle (2016).
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(i.e., within network “sources” are nodes of communication with other net-
works) and subsequently propagate through each  network involved. This is 
graphically depicted in Figure 6.4c, where the retrosplenial cortex of the 
default mode network communicates with the frontal eye fi eld component 
of the  dorsal  attention system. The full signifi cance of the correspondence 
between within- and between-network spatiotemporal trajectories and how 
cross-network signaling is implemented remains to be understood. When 
this understanding is accomplished, however, it will begin to reveal how 
information is integrated among the large-scale functional networks, which 
resting-state fMRI has been so instrumental in defi ning. Characterizing such 
integration is crucial for revealing how these components together produce 
a unitary brain network, whose function and dysfunction may be understood 
best at this emergent level. 

Summary

The above material gives a broad overview of work that has occupied us over 
the past several years, nourished, of course, by the work and advice of many 
others. Viewed in the context of the question posed to us—How many types 
of brain networks are there?—we must conclude that seen “from the top,” the 
brain exhibits a remarkable degree of integration, so much so that the answer 
could arguably be “one.” At the very least, the brain operates on a background 
of highly integrated and energetically costly activity represented, in part, by 
 ISA. This activity provides a  tapestry upon which the contributions of the more 
spatially and temporally granular elements of the brain are coordinated in the 
execution of their unique contributions to brain function. Many issues remain 
to be explored, which we highlight below.

Cross-Frequency Coupling

If the fMRI BOLD signal specifi cally represents ISA  as we have demonstrated 
(Mitra et al. 2018), how do other frequencies fi t in to this perspective? The 
idea of  cross-frequency coupling is certainly not new (e.g., Monto et al. 2008). 
Conceptually, the phase of lower frequencies (e.g., delta or ISA) modulates the 
power of higher frequencies. This has been our experience, both in our work 
in humans (Mitra et al. 2016) as well as in rodents (Mitra et al. 2018). It is 
therefore important, when studying conventional electrophysiological activity 
(e.g., spiking and high-frequency local fi eld potentials), to keep in mind the 
context—in a neurophysiological sense, provided by lower frequency activ-
ity—in which such phenomena occur. As Rodolfo Llinás so aptly said: “the 
signifi cance of incoming sensory information depends on the preexisting func-
tional disposition of the brain, [and] is a far deeper issue than one gathers at 
fi rst glance” (Llinás 2001:8). 
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Task-Evoked Activity

It is a strongly embedded tradition in cognitive neuroscience to refer to local, 
task-evoked changes in the fMRI BOLD signal as representing “activations.” 
Broadly translated, this means to most that one is observing a low-pass fi lter 
of the brain’s neurophysiology. That is clearly not the case. Considering the 
specifi city of the fMRI BOLD signal, we need to reconsider how we interpret 
“activations” and, for that matter, “deactivations.” Could it be, as the work of 
Schroeder and colleagues suggest for delta activity (Schroeder and Lakatos 
2008), that changes in the fMRI BOLD signal similarly represent phase reset-
ting of ongoing  ISA? This is an important idea that deserves our attention as 
we attempt to understand better the brain’s remarkable capacity to predict and 
prepare for future events. Hints of what to expect are already present in extant 
data (Ress et al. 2000; Sirotin and Das 2009; Cardoso et al. 2012). 

Cellular Origins of ISA

Many discussions of brain function refer generically to “neurons” without be-
ing clear about which type. In considering something as potentially complex 
as ISA, it is likely that interneurons play a role that has yet to be defi ned. But 
our vision should broaden even further to include the glia, particularly the as-
trocytes. As Poskanzer and Yuste (2011) pointed out, astrocytes have a direct 
role in inducing “up states” in neurons. If, as we suspect,  ISA represents large-
scale changes in neuronal excitability, then astrocytes need to be factored into 
the equation. 

Metabolism

We suspect that many in neurobiology would be surprised to know that cellular 
metabolism, particularly glycolysis, is rhythmic in every cell system in which 
it has been studied (Goldbeter 1996). These rhythms have a frequency remark-
ably similar to ISA and are intimately related to cellular excitability and  action 
potentials (Bertram et al. 2007). Furthermore, cells form communities on the 
basis of these rhythms (Campbell et al. 2015)! The close relations between ce-
rebral blood fl ow, metabolism, and functional brain imaging signals command 
attention to the relationship between metabolic activity and ISA. More gen-
erally, uncovering potential consequences of metabolic rhythms on electrical 
excitability in the brain will be valuable as we strive to achieve a more broadly 
based understanding of brain function. 

Neuromodulation

Finally,  as we consider the mechanisms behind state changes in ISA, be it 
sleep versus wake in humans (Mitra et al. 2016) or anesthesia versus wake in 

From “The Neocortex,” edited by W. Singer, T. J. Sejnowski and P. Rakic. 
Strüngmann Forum Reports, vol. 27, J. R. Lupp, series editor.  

Cambridge, MA: MIT Press. ISBN 978-0-262-04324-3



108 M. E. Raichle, R. V. Raut, and A. Mitra 

laboratory animals (Mitra et al. 2018), it is important to consider the role of 
neuromodulators in rebalancing  relationships within and among brain systems 
(Bargmann and Marder 2013) that are being mediated through ISA. 
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