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Abstract

Humans are better than artifi cial computational systems at learning to do new tasks 
through interaction. Part of this ability stems from preexisting capabilities that appear 
early in human development. Children have internal physical models of how objects 
move and they attribute mental states (e.g., goals,  beliefs) to objects when their behav-
ior is unpredictable. They are also able to develop context-specifi c rules and identify 
how to help others achieve their goals. To explore how these abilities can be transferred 
to interactive task learning (ITL) systems, this chapter proposes a  world-state prediction 
 model. The prediction model can learn detailed physical regularities in the environment 
and is able to develop representations for predicting the actions and goals of animate 
agents. The model suggests that prediction and prediction error are capabilities that 
could improve ITL systems.

Introduction

Humans are good at learning new tasks through interaction. If you show people 
how to play a new game, where one needs to fi nd monsters in different lo-
cations in the real world and throw objects at them using your smart phone 
screen, humans can easily learn to play that game without extensive training. 
This ability to learn a new game through interaction with a human teacher dif-
fers greatly from the learning ability of existing artifi cial agents. Recently, a 
 deep learning neural network was shown to be able to learn to play 49  Atari 
video  games by mapping between pixel-based images and the joystick actions 
needed to play the game (Mnih et al. 2015). Although the ability of this neural 
network to learn to play these games is impressive, each game requires exten-
sive training based on a massive database of games. Also, while human experts 
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are good at playing new games (Green and Bavelier 2012), these deep learning 
systems showed a lower accuracy when learning multiple games within the 
same system (Kirkpatrick et al. 2017). Part of the difference between human 
and artifi cial systems arises from abilities that appear early in human develop-
ment, which shape the way that learners understand new tasks. Using studies 
of infants and toddlers to understand these early abilities, I will attempt to link 
these abilities to interactive task learning (ITL).

Although most people assume that infants exist in a “great blooming, buzz-
ing confusion” (James 1890), research with infants has revealed that they 
appear to understand a range of constraints on the physics of objects (e.g., 
occlusion, support, collision, containment; Baillargeon and Wang 2002) and 
their interaction with other moving objects (e.g., Leslie and Keeble 1987; 
Frankenhuis et al. 2013). In addition, infants have social knowledge about 
how animate entities differ from inanimate entities in their motivations for ac-
tion (e.g., goal-directed motion; Woodward 1998; Luo and Baillargeon 2010). 
Since these infants were not explicitly trained to understand the novel scenes 
used in these studies, this research suggests that their event understanding sys-
tems may have features that enhance their ability to automatically understand 
both physical motion and goal-directed action. These abilities give humans a 
rich predictive representation of their world even before they begin to interact 
with a teacher in learning a particular task.

Early Developing Abilities in Human Children

We cannot ask preverbal  infants about their  understanding of the world. Our 
knowledge about their abilities comes from two tasks that measure their expec-
tations:  habituation and violation of expectations paradigms. In the habituation 
paradigms (Spelke et al. 1992), infants are exposed to a scene multiple times 
until they habituate or become bored with the scene; they will often look away 
from the scene when this happens. When a new scene A is shown and the child 
is still bored or uninterested, this is seen as evidence that the child views scene 
A as being the same type as those that were viewed previously (even if it is dif-
ferent in some way). If the child becomes interested upon viewing a new scene 
B (dishabituation), this is taken as evidence that they view scene B as being 
distinctly different in an important way. If scenes A and B differ in some partic-
ular dimension, then dishabituation provides evidence that infants have knowl-
edge of this dimension. In violation of expectation paradigms (Baillargeon and 
Wang 2002), children are shown an event that conforms to their expectations. 
Then they are shown an unexpected event that violates these expectations. If 
children look at the unexpected event longer than the expected event, this indi-
cates that they have some knowledge about the features that differentiate these 
two events. Habituation involves learning about the event within the experi-
ment, whereas violation of expectation involves knowledge gained outside the 
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experiment. These two types of paradigms allow us to probe the knowledge 
that young children have about visual events.

The Atari deep learning system started with pixels and had to learn the enti-
ties associated with different games (e.g., aliens, frogs). Although the human 
vision system also has a pixel-like input in the rod and cone cells of the eye, 
the brain seems to process the world in terms of objects that can exist even 
when they are not visible. Baillargeon et al. (1985) showed that seven-month-
old infants were surprised when an object was placed behind a screen and the 
screen was rotated such that the object seemed to have disappeared. This viola-
tion of expectations study demonstrated that infants believe that objects take 
up space (spatial extent). Objects are also collections of elements that move as 
connected and bounded wholes. Spelke (1990) found that if two objects move 
relative to each other, even though they were constantly attached or connected, 
infants perceive them as two objects. Furthermore there is evidence that infants 
expect objects to move on connected, unobstructed paths and are surprised 
when objects appear to move invisibly across space or through other objects 
(Spelke et al. 1992; Aguiar and Baillargeon 1999). Therefore, within the fi rst 
year of life, infant understanding of the world is not based on a raw list of pixel 
values, but rather on an internal model of objects with constraints on how they 
move and their spatial extent.

If representations are object based for infants, then infants must be tracking 
objects as they move around the scene. Leslie et al. (1998) have argued that 
infants and adults use one system for  object tracking, which involves a set of 
pointers that stick to a particular object (dorsal where system), and another 
system to encode the visual features of each object (ventral what system). This 
is different from the approach in the deep learning Atari system, which utilized 
a series of convolutional neural networks to mimic the gradual abstraction of 
features in the ventral part of the visual system in the human brain, but did 
not have an explicit system for object tracking (e.g., a single frog on different 
parts of the screen are treated as different “objects”). Evidence for these visual 
pointers comes from multiple object tracking studies, where adults see videos 
with multiple identical circles moving around randomly (Pylyshyn and Storm 
1988). Specifi c (white) circles are identifi ed as targets (e.g., colored in red) and 
then the circles are made identical again (e.g., changed back to white). The 
circles then move around randomly while participants stare at a cross in the 
center of the screen. Later, participants are queried about a single circle and 
must say whether it is a target or not. Due to the fact that the circles are identi-
cal during the random motion, there are no visual features that can be used to 
track the circles, so the only way to identify the targets is if the participants are 
following them through the whole trial. These studies suggest that participants 
can track a limited set of objects in parallel using a set of visual pointers.

Support for these pointers in infants comes from a study by Spelke et al. 
(1995), where infants viewed two screens, separated by a gap, and saw an 
object move behind the fi rst screen and another object (with the same shape) 
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emerge later from behind the second screen (Figure 16.1). In the discontinuous 
condition, it appears that there must be two objects, because an object cannot 
cross the gap without being visible. In the continuous condition, the object 
appeared in the gap between the two screens such that it looked like one ob-
ject was moving behind both screens. Infants were tested with similar scenes 
without the screens and they showed that they preferred the test scene that 
matched the training scene. If the infant assigned a pointer to the fi rst object, 
then the same pointer could be used when it reappeared in the gap as well as 
when it appeared after passing behind the second screen. In the discontinuous 
condition, the appearance of the object from the second screen would require a 
new pointer. Additional studies by Xu and Carey (1996) showed 12-month-old 
infants scenes where two objects with different shapes appeared from behind 
a screen one at a time. At test, the screen was lifted and they were shown an 
expected scene with two different objects or an unexpected scene with two 
objects of the same shape, and they were surprised by the unexpected scene. 
These results suggest that infants track objects in scenes, even when they are 
not visible, and their representation of scenes involve these object-based rep-
resentations. Object tracking is critical in any interactive task where an agent 
needs to communicate about multiple identical objects. For example, to learn 
how to barbecue multiple similar-looking items on a grill, a learner needs to 
track which items have already been fl ipped by the teacher as well as which 
items still need to be fl ipped (as well as any that might have accidentally fallen 
on the fl oor in the fl ipping process). Thus, the work with infants suggests that 
humans have a task-independent multiple-object tracking ability that could 
help support these types of interactive tasks.

After an infant can track objects, it becomes possible to identify the nature 
of the resulting interaction. One study that provides an important insight into 

Continuous condition

Discontinuous condition

Test: One object

Test: Two objects

Figure 16.1 Two conditions in which object tracking was tested in 12-month-old in-
fants (Spelke et al. (1995). Arrows indicate the path of an object (black box) as it moves 
behind two screens (large gray box) to its fi nal position (white box).
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how this takes place was conducted by Gao et al. (2009), who used a multiple 
object tracking study to examine the features that support identifying a chasing 
action. In this study, multiple identical circles moved in a random manner. One 
of these circles was the wolf (the rest were sheep) and it had the property that 
it was always moving toward one of the sheep (central circle is wolf in Figure 
16.2). Gao et al. found that adults were better at identifying the wolf when the 
wolf’s angle of motion toward the sheep was more direct (“heat seeking”). 
Because the wolf and the sheep were all identical circles, participants had to 
fi rst track the objects using pointers and then encode visual heuristics between 
pairs of pointers, such as the directness of the angle of motion. These visual 
heuristics appear early in development, as four-month-old infants prefer videos 
with chasing as opposed to those without chasing (Frankenhuis et al. 2013). 
This shows that children and adults are not just tracking objects, but associat-
ing relational features with each object pointer, such as angle of motion rela-
tive to other objects in the scene.

When chasing is taking place, the “wolf” consistently tries to move in the 
direction of the “sheep.” In other actions, there is more temporal structure to 
the interaction. One event that has been extensively studied involves pushing 
or launching actions (Michotte 1963), such as when a green ball hits a red 
ball and pushes it away. This event begins with the pusher (e.g., a green ball) 
moving toward the pushee (e.g., a red ball). Critically, the pusher should make 
contact with the pushee, and the resulting motion from the pushee should begin 
without delay after contact. An understanding of the effects of these constraints 
on causal actions is evident early in acquisition. Leslie (1984)  habituated six-
month-old infants to videos and looked at how much they dishabituate to re-
versed versions of videos. Results show that they view the reversed one as 

Figure 16.2 Schematic of visual heuristics used by adults to track multiple objects in 
a chasing action: the “sheep” are moving away from each other while being pursued by 
the “wolf” (central circle) Adapted from Gao et al. (2009).
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being substantially different than the one to which they were habituated. They 
found that reversals of pushing actions yielded more  dishabituation than rever-
sals of videos with a single object moving across the screen. They also found 
that infants were less likely to dishabituate when the video had no contact be-
tween the pusher and pushee or when there was a delay in the movement of the 
pushee (Leslie and Keeble 1987). This work suggests that infants have mul-
tiple innate features/heuristics that they are able to combine in various ways to 
recognize  causality. When observing an item knocked off of a grill, during the 
course of fl ipping other items, a person can identify the cooking tongs (used 
for fl ipping) as the cause of the action (item falling on the fl oor) without prior 
training. Thus humans have a range of task-independent features that are ap-
plied to multiple objects in parallel and which combine to give them a better 
understanding of the causal structure of real world events.

One account of how humans understand these actions is to assume that hu-
mans take a teleological stance (Gergely and Csibra 2003), where actions are 
perceived as a rational means to achieve a goal state under certain situational 
constraints. Evidence in support of this position comes from studies that use 
videos where a ball jumps over a wall; this suggests that the ball has the goal 
of getting to the other side (Figure 16.3). Later, when the wall is removed, one-
year-old infants were surprised when the ball jumps along the same path, be-
cause it could have moved in a direct path toward its goal. On this view, infants 
are able to identify the goal state of the ball and how the situational constraints 
of the wall block the direct motion toward the goal (Csibra et al. 1999). Thus, 
the most rational approach to achieve the goal would be to jump over the wall 
when there is a wall, and to go straight when there is no wall. This ability to 

Familiarization Scene

Test: Same path

Test: Direct path

Figure 16.3 Schematic depiction of the teleological stance. During familiarization, 
one-year-old infants observed a ball jumping over a hurdle to reach a goal state (top). 
Two test states followed where the ball followed the same path (middle) despite the 
hurdle being removed and where it followed a direct path (bottom). The infants were 
able to identify the situational constraints. Adapted from Csibra et al. (1999).
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see how action is dependent on situational constraints is an important ability 
for ITL systems. In the grill example, if a teacher was trying to fl ip item A and 
accidentally caused item B to fall off of the grill, the human learner would 
recognize that the arm motion of the teacher was not the most rational/direct 
means of causing item B to end up on the ground, and thus the teacher’s actual 
goal must have been to fl ip item A.

Up to now, we have looked mainly at studies that involve whole objects 
without any moving parts. But it has also been shown that people can recognize 
biological motion in  point-light displays (Johansson 1973). In these displays, 
performers with multiple lights attached to their body at various points (e.g., 
hand, legs, head) perform some action (e.g., running, jumping) in a dark room, 
where only the lights are visible (Figure 16.4 shows two frames from a running 
video). When these videos are shown to adults, they are able to label the action 
that is being depicted (Johansson 1976). Golinkoff et al. (2002) also showed 
two point-light displays of different actions (dancing, walking) to three-year-
old children and found that when the children heard a verb that matched one of 
the actions (“look at dancing”), they turned their head toward the appropriate 
video. Since the mapping of specifi c actions and words must be learned from 
 experience, these abilities appear after three years of age, but the ability to 
understand these videos emerges earlier: four- to six-month-old infants exhibit 
a preference for a point-light human walker over an inverted walker or random 
motion (Fox and McDaniel 1982). Bidet-Ildei et al. (2014) found that even 
three-day-old infants prefer walkers over random motion, even when there was 
no horizontal translation across the screen (as in normal walking). These stud-
ies demonstrate that the infant mind is ready to understand biological motion 
from birth. One way to explain this ability is that the mind attempts to predict 
the motion of the points in these displays and biological motion is more pre-
dictable, because there are correlations between the motion of different points 
in these displays. This work suggests that human understanding of action does 

Figure 16.4 Two point-light displays of a man running.
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not involve learning rigid action rules; instead, predictive learning mechanisms 
capture the complex motion patterns present in biological systems.

To explain how we process biological motion in point-light displays, Giese 
and Poggio (2003) proposed a computational model that used the fact that 
the brain has distinct pathways to process form and motion. The ventral what 
pathway is specialized for form information and it starts initially with small 
receptive fi elds, which focus on small features (e.g., the orientation of lines), 
and gradually expands to larger receptive fi elds, which eventually span the 
whole object. The dorsal where pathway is specialized for motion information: 
it starts with motion information in small receptive fi elds (e.g., motion of lines) 
and expands to higher-level receptive fi elds (e.g., overall direction of the ob-
ject). While the motion pathway seems to be most relevant for biological mo-
tion understanding, Giese and Poggio’s model proposes that the form pathway 
also plays an important role by using snapshots of poses to identify the types 
of action. Support for the role of the form pathway comes from studies that 
show that  point-light display recognition is view dependent (e.g., changes in 
depth reduce recognition), which is a property of the ventral pathway (Bülthoff 
et al. 1998). Furthermore, some patients with damage to the motion pathway 
are still able to recognize biological motion, which suggests some role for the 
form pathway (McLeod et al. 1996). The motion pathway, however, is still the 
dominant system for recognizing point-light display motion, and fMRI work 
has found that the distinction between biological and nonbiological motion 
typically occurs in higher areas of the dorsal pathway (Decety and Grèzes 
1989). In humans, it seems that multiple parallel pathways are involved in ac-
tion understanding.

While biological motion  is an important feature for identifying animate 
entities, it is also possible to identify these entities by virtue of their interac-
tion with other objects. Evidence for this in infants comes from a study by 
Woodward (1998), who showed scenes where an arm grabbed one of two toys 
(Figure 16.5). During the test, the objects were switched and the arm grabbed 
either the same toy (old goal) or the new toy (new goal). Woodward found that 
fi ve- to six-month-old infants were surprised when the arm went for the new 
goal over the old goal. This suggests that they think that the arm’s motion is 
guided by a mental goal or preference for the old goal. Infants were surprised 
by an arm reaching for a new goal, but not by a mechanical claw, which sug-
gests that they only attribute goals to the arm. Luo and Baillargeon (2005) 
have shown that a similar preference is present for a box when it moves in a 
self-propelled manner. They presented fi ve-month-old infants a familiarization 
scene where a box moved toward a preferred object; later at test, they showed 
the infants the box moving toward the same object (old goal) or a novel object 
(new goal). They found a difference between the preference for the old goal 
and new goal was larger when the familiarization scene has two objects as 
opposed to one object. When there are two objects, the movement of the box 
shows that it prefers that object over the other one. When there is only one 
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object, the movement toward that object does not show a strong preference, 
because there is only one option. Luo (2011) showed that even three-month-
old infants demonstrate this preference, even when there was only one object 
at familiarization, as long as the box showed its preference for the object by 
moving toward the goal object in two different locations on the screen. In con-
trast to a self-propelled box, infants were surprised when an inert box reversed 
direction spontaneously, remained stationary when hit or pulled, or remained 
stable when released without support. One reason self-propelled motion is im-
portant is that the behavior of the box cannot be predicted based on physical 
constraints like gravity or inertia, and it is this unpredictability that triggers the 
assignment of mental states like goals.

The goal-directedness of human behavior was used to look at  false belief 
behavior by Onishi and Baillargeon (2005). Here, 15-month-old children were 
fi rst shown a familiarization event where a toy was hidden in a green box by a 
person in front of the infant. Then the scene was changed such that either the 
person’s belief about the object in the green box would be false (e.g., the toy 
was moved secretly to the yellow box) or true (e.g., the toy was moved to the 
yellow box while the person watched). Later at test, the children observed a 
person reaching into the green box or yellow box. When that person saw the 
toy move into the yellow box, the children expected the person to reach for the 
yellow box and were surprised when that person reached into the green box. 
When the person did not see the toy move, the children were surprised when 
the person reached toward the yellow box, because they knew that the person 
had a false belief that the toy was in the green box. To show these differences, 

Habituation event

Test Event: Old Goal

Test Event: New Goal

Figure 16.5 Depiction of goal recognition in infants, based on a study by Woodward 
(1998). Top: A child is shown an arm reaching out to grab an object (the circle). The 
position of the objects is then altered: the arm reaches for the same object (middle) 
versus a new object (bottom). When a human arm was shown, infants expected the arm 
to reach toward the circle. This expectation was not present when a mechanical arm 
was involved.
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the infant cannot just record where the objects are located. They must also 
track where the person thinks these objects are located and how those  beliefs, 
true or false, guide their reaching behavior. This is a nonlinguistic  theory of 
mind task which shows that early in development, children can track the be-
liefs of others and use these beliefs to predict their behavior. Since ITL systems 
must interact with humans whose behaviors are driven by their beliefs (e.g., a 
teacher searches for a knife in a drawer, because that is where she thinks it is), 
it would be useful for these systems to have the ability to infer  beliefs in the 
way that children seem to be able to do.

These abilities of infants to identify primitive mental states of others can 
support the understanding of more complex social  motivations. For example, 
when six-month-old infants were shown a square trying to get up a hill, and it 
was helped up the hill by a triangle in one scene and hindered by a circle in an-
other scene, they then preferred the triangle to the circle later, thus demonstrat-
ing that they understood that the triangle was helping the square reach its goal 
(Hamlin et al. 2007). By 18 months of age, toddlers and human-encultured 
chimpanzees are able to identify the ultimate goals of adult humans (e.g., put-
ting books into a book case) and perform actions that help the adult to achieve 
these goals (e.g., opening the book case door) (Warneken and Tomasello 2006). 
Such helping behavior involves prediction of the goal, because the goal has not 
yet been achieved. In addition, the helper must identify objects that they can 
manipulate in the environment and predict whether these changes will help in 
achieving the goal. Since ITL systems are attempting to help humans in their 
tasks, these humanlike prediction abilities would enhance their interactions.

When a child comes to an ITL task, they have a model of the constraints 
that inanimate physical objects have in the world. In addition, they know that 
animate entities move in ways that refl ect their goals and beliefs, and these bio-
logical entities can have multiple parts that work in concert to perform various 
actions. Furthermore, they can learn about behaviors in various contexts and 
use that knowledge to identify ways to help. While it is possible that children 
have a range of different modules which allow them to exhibit these capabili-
ties, the range and fl exibility of these abilities suggests that they are not sepa-
rate isolated modules but rather part of a task-general system that integrates 
physical constraints, mental states, and learned regularities into a single system 
that attempts to predict behavior. Below, I propose that such a system will be 
useful for ITL.

A Developmentally Motivated World Prediction Model for ITL

How  can ITL systems incorporate this rich database of  knowledge that chil-
dren seem to possess? In this section, I will suggest that incorporating a world 
prediction  model can give ITL systems some of these abilities. To see how 
such a model might work, let us consider the following example: a robot learns 
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from a human teacher how to cut a carrot. The robot has a carrot and a knife, 
and the human wants to show the robot how to cut the carrot by pantomiming 
a cutting action using her hand. For the robot to understand this action, it must 
be able to map the back-and-forth motion of the human hand in space with no 
carrot to its own hand with the knife. It would also need to know that the back-
and-forth motion of the knife is the second component of a cutting sequence.

1. CONTACT: make contact between knife and carrot.
2. SAW-MOTION: move knife back and forth on carrot.
3. SPLIT: continue motion until carrot is in two pieces.

This task presents several challenges, from segmenting the event to  under-
standing the pantomimed hand action. In pretend play studies, children from 
around the age of two years seem to understand  pantomime actions of others 
and quickly generalize this knowledge to their own actions (Rakoczy et al. 
2004; Rakoczy and Tomasello 2006; Rakoczy 2008). It would be useful for an 
ITL system to have a similar ability to understand pantomimed actions.

Human predictive knowledge is very detailed and context specifi c, so the 
world prediction model makes predictions at a fi ne time granularity. A model 
by Reynolds et al. (2007) does perceptual prediction to segment events; their 
model segmented sequences of routine actions encoded as  point-light displays 
(as in Figure 16.4). They used a recurrent neural network that attempted to pre-
dict the next state of the points, using the previous state, and the error in predic-
tion was used to update the model’s weights so that it encoded the knowledge 
about the transitions between states. In addition to using error to learn the 
transitions, the model had an additional gating network that used points of 
large prediction error to identify event boundaries. To adapt this for ITL learn-
ing, we can assume that the system is attempting to use the present state of the 
world to predict the next state of the world (Figure 16.6). We will assume that 
the world state encodes static elements of the scene and the state of the robot’s 
body that are derived from sensors and effectors (see Figure 1.1 in Mitchell et 
al., this volume). In addition, let us assume that the system tracks  objects in 
the visual input, so that the world state is not a pixel-like representation but is 
instead based on static and motion properties of objects (e.g., shape, velocity, 
acceleration). Objects are any moveable element including inanimate artifacts 
(e.g., knife) as well as animate entities and their body parts (e.g., hand). The 
world state at time t is the input (bottom box, Figure 16.6); its activation is 
spread through internal layers with recurrent connections to help in the learn-
ing of sequential regularities; and the model generates a prediction for time 
t+1 at its output (second box from top, Figure 16.6). The actual world state at 
t+1 is the target (top box, Figure 16.6) and the difference between the target 
and the predicted world state is the error. The error passed back to the internal 
layers is used to learn representations that encode the internal parts of events. 
Importantly, the input state of the world at time t and t+1 is different from the 
knowledge of the world inside of the robot, which is encoded in the internal 
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layers. If we take the example of learning the carrot cutting sequence from a 
human  demonstration, the model will be attempting to predict the state of the 
world multiple times a second. After it sees the back-and-forth movements of 
the knife (SAW-MOTION), the system should be able to predict that motion. 
But the system will not be able to predict that the carrot will split into two ob-
jects, and the large prediction error will be evidence for segmenting the SAW-
MOTION component from the SPLIT component of the cutting sequence.

In ITL, there are aspects of the task that are specifi c to the particular situa-
tion (e.g., the knife is in the drawer) and aspects that refl ect long-term knowl-
edge about similar tasks (e.g., hands tend to reach for knives, but knives do 
not reach for hands). To model these different aspects of  world  knowledge, 
the world-state prediction model has two internal layers. The layer on the right 
side in Figure 16.6 is called the fast-changing internal layer: it has a high learn-
ing rate, which allows it to learn task-relevant temporary knowledge quickly. 
The layer on the left side of Figure 16.6 is called the slow-learning internal 
layer: it has a lower learning rate, which allows it to learn slowly regularities 
that are consistent across the whole of its previous input experiences. It has 
been argued that humans have a similar distinction in their brains between 
slow cortical learning and fast  one-shot hippocampal  learning (McClelland 
et al. 1995). We assume that the slow-learning layer develops its knowledge 
gradually based on many years of visual experience in the world. It would 
fi rst learn to predict transitions based on physical constraints (Spelke et al. 
1992). Given that the motion of self-moving objects is not fully predictable 
from physical constraints (Luo 2011), the prediction error that is generated 
will cause the model to learn separate internal representations for the actions 
of animate entities and these representations will eventually come to encode 

World at time t Tracked objects in scene (Position + features, e.g., shape)
Inanimate artifacts
Animate entities including teacher and body parts (e.g., arms)

Background static
elements

State of robot’s own 
body parts

Slow learning Internal Layer
Encodes abstract rules/regularities as well as item knowledge 
Background knowledge learned before task

Fast changing Internal layer
encodes task specific knowledge
one -shot learning, sparse coding

Predicted next state Tracked objects in scene (Position + features, e.g., shape)
Inanimate artifacts
Animate entities including teacher and body parts (e.g., arms)

Background static
elements

State of robot’s own 
body parts

Target next state from world at time t+1 Tracked objects in scene (Position + features, e.g., shape)
Inanimate artifacts
Animate entities including teacher and body parts (e.g., arms)

Background static
elements

State of robot’s own 
body parts

Error is difference between prediction 
and next state for all features 

Error is fed back to enhance event segmentation 

Figure 16.6 World-state prediction model.
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mental state features (e.g., goals, preferences, intentions), because these are 
useful for predicting the motion of these entities (Woodward 1998). After the 
slow-learning network has encoded background knowledge, then in an ITL 
task, the fast-learning network will only encode the aspects of the scene which 
are not predictable from the slow-learning network. For example, the slow-
learning network has experience with hands reaching for objects, so it does not 
store the low-level motion of the hand. Because it has less experience with in-
animate objects moving against another inanimate object (as when the knife is 
cutting the carrot), the prediction error generated causes it to be richly encoded 
in the fast-learning system. Thus there is a division of labor in how knowledge 
is distributed to the fast and slow subnetworks, as can be seen in connectionist 
models of language (Chang 2002; Janciauskas and Chang 2018).

Can this world-state prediction model be useful in understanding how an 
ITL robot would be able to understand a pantomimed cutting demonstration? 
Let us assume that the robot has grasped the carrot and placed the knife in 
contact with it, but is unsure how to cut the carrot so the human  pantomimes 
the back-and-forth motion using her hand. The world prediction system can-
not initially predict the back-and-forth hand motion based on its general  world 
 knowledge; hence the large prediction error that is created causes this motion 
sequence to be encoded in the fast-changing internal layer of the model. The 
world state is encoded in terms of the motion of objects independent of their 
features (e.g., shape, color), so the predicted sequence of states encoded by 
the fast-changing layer can be used to guide the motion of the robot’s hand 
just by mapping the object pointer for the teacher’s hand to the robot’s motor 
control system (allowing it to exhibit childlike generalization, Rakoczy et al. 
2004). Finally the large change of state that takes place when the carrot is split 
into two is used to segment the event, and this might cause the robot to stop 
and evaluate what to do next. Thus the world-state prediction model helps to 
explain how a robot with no knowledge about cutting events could learn the 
back-and-forth motion component of cutting sequences from interaction with 
a human teacher.

It is clear that a world-state prediction model would only be useful in an 
ITL robot if it was tightly integrated with other systems for  planning and in-
teraction (see Salvucci et al., this volume). It suggests, however, ways to apply 
previously learned background knowledge from non-ITL situations to sup-
port event segmentation and learning from visually taught events. Although 
the model is described within an  error-based  learning recurrent network, other 
algorithms could also be used. What is critical is that predictions are generated 
at each point in time, so that an error signal can be generated which identifi es 
which aspects of the scene are unexpected. It is also important that the system 
learn its internal representations based on prediction mismatch, so that it has 
more extensive internal representations for less predictable entities like goal-
driven agents. Furthermore, the prediction error is itself a signal that can be 
used to identify points where human feedback is needed or to segment events. 
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A growing body of work in psychology argues that  prediction is taking place 
all the time, particularly in  language processing (Altmann and Kamide 1999). 
Young children seem to generate linguistic expectations automatically (Lew-
Williams and Fernald 2007; Mani and Huettig 2012). Furthermore, changes 
that take place in the language representations of adult language users can 
be explained as prediction  error-based  learning (Chang et al. 2006; Dell and 
Chang 2014). If robots are doing a similar type of prediction about the nonlin-
guistic world and constantly updating their knowledge within a system like the 
world-state prediction system, then they would have rich moment-by-moment 
predictions and error signals, which could be used to learn new tasks. Thus, 
although the goal of ITL is not to model the development of human abilities 
in robots (i.e., developmental  robotics) (Cangelosi et al. 2015), incorporating a 
module that is motivated by detailed prediction abilities of humans into these 
systems could enhance the ITL capabilities of artifi cial agents.

Conclusion

Humans engage in  ITL based on multiple years of experience watching ani-
mate and inanimate entities interact. Children develop a model of how inani-
mate entities move based on physical constraints and how animate entities 
move based on inferences about their mental states. They can identify tempo-
rary goals in particular contexts and use long-term knowledge to understand 
the actions of others. Although ITL systems implement some of these abili-
ties in separate modules, research on humans suggests that these abilities are 
the result of a system that is constantly involved in making predictions and 
adapting these predictions in response to experience (learning). Furthermore, 
prediction error may be a useful diagnostic signal for ITL systems. Given that  
humans expect these abilities when they teach and interact with other humans, 
it is likely that humans will prefer to interact with ITL systems that have a rich 
internal predictive model.
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