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Abstract

An early concept of interactive task learning (ITL) assumed a human teacher and ma-
chine learner. This book broadens the thinking about this relationship by explicitly 
allowing fl exibility regarding the teacher and learner roles. Future ITL systems will 
be maximally useful and benefi cial to the extent that they are effective and effi cient 
learners as well as effective and effi cient instructors. Focusing on task instruction, the 
primary goal of this chapter is to relate the critical role of instruction in ITL to key ex-
isting literature from related areas of research. The general concept of  co-constructive 
task instruction is introduced and differentiated from traditional conceptualizations of 
fi xed instructor and learner roles. Frameworks, models, and methods for task instruc-
tion are discussed, and broad connections are made between ITL and structural and 
adaptive improvements to instruction, historical developments in programming, and the 
extraordinary challenge that fl uid, fl exible, co-constructive task instruction and learning 
places on the vision for ITL.

Co-Constructive Task Instruction

The human  and machine roles in interactive task learning (ITL) were viewed 
earlier as strictly discrete and fi xed, with one always serving as the teacher 
and the other as the learner (Laird et al. 2017a). We anticipate it will be more 
accurate and useful to view these roles as fl uid and dynamic, with the hu-
man and computer learning together and co-constructing an understanding 
of their task.
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In co-construction, the aspect of  iteration is crucial for the model of the 
learner and teacher because it changes the notion of intent (Figure 11.1). 
Accordingly, when the course of interaction is viewed as a possible method 
of providing feedback and instruction (Figure 11.1a), the initial intent remains 
stable throughout the entire interaction and is generated by the teacher as s/he 
guides the learner.

However, the iterative nature of an interaction offers not only the possibility 
of giving feedback or instruction, it also provides the possibility to adjust and 
align with the learner’s action. In this way, it is possible for the initial intent 
to be changed or reformulated as the interaction unfolds. Teaching within this 
framework refers to a sequence of coactions established to achieve a specifi c 
goal. A teacher will have knowledge of the tasks that must be completed to ar-
rive jointly at the goal. A knowledgeable teacher is able to constrain the actions 
of a learner such that the intended goal will be reached (Heller and Rohlfi ng 
2017). However, in this framework, the strict role division between learner and 
teacher vanishes: individual actions that must be performed can be taken by 
both partners as they each contribute to reaching the joint goal.

The process of co-construction is temporal and embeds learning and future 
interaction for both human and machine. Co-construction is a process through 
which mutual  understanding or “ common ground” can be achieved between 
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Figure 11.1 The iterative nature of an interaction is depicted: (a) the teacher has an 
intent, provides instructions to the learner accordingly, and receives feedback; (b) both 
agents co-construct a joint goal. While in the approach focusing on the feedback (a), 
roles of the agents are separated, they are both responsible for the intent in the co-
constructing approach (b).
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the teacher and learner. Common ground, in this sense, is neither fi xed nor 
established once in an interaction, but is subject to constant change and evolu-
tion. Importantly, it is based on the history of interaction.

At the beginning of the learning process, the language channel between hu-
man and machine (gray arrows, Figure 11.2) may be quite limited. Nevertheless, 
the agents can make progress through ITL via shared interactions in the world, 
as when the teacher demonstrates, the learner practices, and the teacher adjusts 
to the learner’s multimodal action and reformulates the goal(s) for their joint 
actions. Both agents may make coordinated use of language,  gestures, and ac-
tions which, while not immediately understood, embed the understanding of 
language into shared actions toward specifi c goals (bottom arcs).

As the learning process progresses, the agents become increasingly experi-
enced in working together and adjust to one another. As a consequence of rely-
ing on their  joint experiences in perceiving and manipulating the world/ task 
environment (Figure 11.2, right bottom arcs), the two partners develop new, 
more conventionalized forms of language interaction (represented by the 
thicker arcs at the upper right, Figure 11.2). Task- and communication-relevant 
knowledge inside the machine and human also grow (not shown).

 Team training  practices can facilitate and accelerate the process of humans 
and robots learning to work together (Gorman et al. 2010; Nikolaidis et al. 
2015; Ramakrishnan et al. 2017). The cross-training approach is designed to 
improve team  adaptivity through practice by requiring team members to switch 
roles with one another. Through this process, teammates are able to build a 
shared mental model of the task and  collaboration strategy, and they can thus 
better anticipate one another’s actions (Nikolaidis et al. 2015). In another team 
training method, perturbation training, a team experiences slight disturbances 
(perturbations) during the training process that are intended to help team mem-
bers learn to coordinate effectively under new variants of the given task. This 
method is well-suited to heterogeneous teams, as each member practices his 
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Figure 11.2 For human and machine, co-construction embeds learning and future 
interaction. Agents cannot rely on common knowledge or language; they must dem-
onstrate individual understanding through actions (left: stronger links to world/task 
environment are necessary). With recurrent interaction, agents can increasingly rely 
upon joint experiences, grounded with language (right: stronger links between agents 
indicate increasing knowledge of each other).
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or her own role on the team during the training process; it also does not re-
quire switching roles among team members, as in the cross-training method. 
Results from recent human studies (Gorman et al. 2010) and human–robot 
studies (Ramakrishnan et al. 2017) indicate that perturbation training yields 
high levels of human–human and human–robot performance on novel tasks.

Illustrative Example for ITL

In  human–robot interaction, many factors have an impact on teaching. The hu-
man teacher’s expectations for and knowledge of the robot learner are shaped 
by the robot’s appearance, (mis)conceptions acquired from media and general 
knowledge, any prior human–robot interactions, and the in situ behavior of the 
robot (Hegel et al. 2009; Pitsch et al. 2013; Vollmer et al. 2014). In humans, a 
basic  understanding of the learner can be derived from their outward appear-
ance. For example, we infer that infants do not have the verbal capabilities of 
adults. By contrast, software agents often have no physical experience, and 
two robots with the same appearance are not necessarily equipped with identi-
cal software and capabilities. Thus, during interactions in which a machine 
learns from a human user, part of the student model that we normally would 
assume is available to the teacher (i.e., its existing knowledge and skills) may 
be unknown to its human instructor.

Consider a scenario in which a robot learner is being taught to clean win-
dows by a human. The robot learner is a full-size humanoid robot with the 
following characteristics:

• It can perceive 3D motions of manipulative action demonstrations with 
sensors/cameras.

• It knows that both end-effector position and trajectory may be impor-
tant for goal attainment.

• It understands the concept of “careful” performance (with regard to the 
amount of force applied).

• It is able to generalize a shown movement to a certain extent, such that 
movements performed with one object can be carried out with different 
objects.

The co-construction interaction unfolds as follows:

Teacher:  Takes the cleaning agent, and says, “Look, I will show you how 
to clean this window now. You have to be really careful; it is quite 
old.” T sprays the cleaning agent on the window.

Teacher: Takes the orange cloth, places it on the window, and says: “It’s 
important not to push against the window too hard,” and moves 
the cloth in straight lines from top to bottom. At the end of the 
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 demonstration, T moves the cloth around the edge of the window 
and says, “Done. Do you want to try it?” T puts the cloth on the 
windowsill and begins to spray the cleaner on the window again.

Learner: Says, “Okay,” attempts to grasp the cloth, and fails. (End effector 
not suitable to grasp this object).

Teacher: After observing two failed attempts, T says, “Oh, sorry. Don’t worry. 
You can use the sponge as well,” and gives the robot the blue sponge.

Learner: Moves its arm and places the sponge gently onto the window, re-
moves it again, then sets it down on the windowsill at the exact 
place the teacher put the cloth.

Teacher: Says, “Oh no, no, It’s about the movement I showed. I’ll show it 
again.” T picks up the sponge and demonstrates the downward mo-
tion again on the window (a simpler demonstration: slower, with, 
more pauses, while monitoring the learner’s attention), this time 
with the sponge. T sets the sponge down on the windowsill and 
sprays the window again.

Learner: Says, “I think I’ve got it now,” picks up the sponge, places it gently 
on the window and performs a few up-and-down movements, then 
sets the sponge down on the window sill. “Done.”

Teacher: Says, “Great, you repeat these movements until there is no clean-
ing agent on the glass anymore. This is how you clean a window.”

Learner: Says, “Got it.”

Co-Constructing Intentions

The co-constructive view of learning has certain implications for  intentions 
that are usually considered to drive the partners’ actions. In a co-construction 
process, partners interact iteratively, in turns, to reach joint agreement on their 
intentions and goals; consequently, modifi cations to movement and intent oc-
cur  as the process unfolds. Offering the learner a different object with which 
to perform the task following multiple failed attempts is an instance of such 
adaptation. It requires the teacher to have perceived prior failed attempts and 
understand what the problem is.

In the window-cleaning example, the fact that the robot’s gripper (end ef-
fector) is not suitable to grasp the cloth represents knowledge about the learner. 
This could be a part of the  domain  knowledge that is initially unknown to both 
the teacher and learner, which they will discover together over the course of 
the interaction. As another example of domain knowledge, consider a scenario 
in which the robot has learned about the goal state of the window-cleaning 
task and, during its turn, discovers a spot on the window that will not come off 
when cleaned using the sponge. The robot then suggests, “There is a spot of 
what I think is paint. I cannot remove it with the sponge. We need a different 
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tool.” At this moment, the robot leads the interaction and communicates novel 
information to the human, who, accordingly, learns about the spot from the ro-
bot. In such a case, task knowledge has changed: it now concerns the removal 
of paint from the glass. The  tutor might then show the robot how to remove the 
spot of paint with a razor blade.

This illustrates that intentions are generated over the course of interaction as 
the domain knowledge evolves for the partners.

Jointly Clarifying and Completing the Goal

Similar  to the dynamic view of intentions, the co-constructive view of learn-
ing implies that partners are working jointly toward a goal. In the window-
cleaning task above, when the teacher cleans the window for a second time, the 
teacher monitors the learner more closely over the course of the demonstration. 
If the teacher observes, at the beginning, that the robot’s eye  gaze is shifting 
from the relevant object (the sponge) to the goal position on the windowsill, 
the teacher might stop the movement, shake the object, or say “Robot! Look!” 
to regain the robot’s attention. Once the robot’s gaze is again on the object, the 
teacher’s movements become exaggerated to ensure that the robot continues to 
follow (track) the movement.

This interaction demonstrates  that human teachers are very fl exible; they 
adapt and adjust dynamically to the learner, taking the history of their interac-
tion into account. In addition, both the teacher and learner adapt to the environ-
ment. For instance, the teacher might intend to produce the same movement 
with the sponge as with the cloth, but during the production/demonstration of 
the movement, the teacher observes that the sponge covers a larger area of the 
window and that fewer up and down movements are necessary. Consequently 
the teacher will produce the movements further apart from one another, devi-
ating from the spacing of movements when using the cloth. In addition, the 
teacher has a certain goal intent and an intended action production (i.e., dem-
onstration), but the realized movement may not coincide with either of these 
initial intents.

In the above case, the fi nal production of the robot is actually not satisfying 
the requirements of the goal state. The teacher, thus, understands that the robot 
learner has not yet understood the goal state and clarifi es the goal verbally.

If the modality of language is unavailable (e.g., if the robot simply lacks 
 speech recognition, or there is a construction site outside the window and 
speech recognition is diffi cult in noisy environments), or the robot simply 
does not know what it has to do to remove all of the cleaning agent from 
the window, the teacher might include an additional iteration at the end of 
the interaction, modifying movement and intent to emphasize removal of the 
cleaning agent.
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Frameworks for Task Instruction

ICAP Framework

The interactive, constructive, active, and passive ( ICAP) hypothesis predicts 
the effectiveness of various types of instruction (Chi 2009; Menekse et al. 
2013; Chi and Wylie 2014a; Chi and Menekse 2015). It defi nes four classifi ca-
tions of observable student behavior:

• Interactive: “We operationalize interactive behaviors to dialogues 
that meet two criteria: (a) both partners’ utterances must be primarily 
constructive, and (b) a suffi cient degree of  turn-taking must occur. We 
do not restrict who the partners can be, provided that the criteria are 
met. Examples include a learner talking with another person who can 
be a peer, a teacher, a parent, or a computer agent…” (Chi and Wylie 
2014a:223, italics in the original).

• Constructive: “Our taxonomy defi nes constructive behaviors as those 
in which learners generate or produce additional externalized outputs 
or products beyond what was provided in the learning materials” (Chi 
and Wylie 2014a:222, italics in the original).

• Active: “Learners’  engagement with the instructional materials can be 
operationalized as active if some form of overt motoric action or physi-
cal manipulation is undertaken” (Chi and Wylie 2014a:221, italics in 
the original).

• Passive: The passive mode of engagement involves “learners being 
oriented toward and receiving information from the instructional mate-
rials without overtly doing anything else related to learning” (Chi and 
Wylie 2014a:221, italics in the original).

Suppose a learner, for example, was watching a video of an instructor dem-
onstrating how to wash a window, as in the example described above. If the 
learner just watched the video without pausing it or doing anything else, then 
the activity would be classifi ed as passive (i.e., paying attention). If the learner 
rewound the video to view portions of it over again or mimicked the actions of 
the teacher, then the activity would be classifi ed as active (i.e., manipulating 
the given information without extending it). If the learner explained the ac-
tions by saying to itself, “The trajectory is intended to cover all the glass with 
minimal overlap,” then the activity is classifi ed as constructive (i.e., generating 
information not mentioned in the video). If the learner works with a second 
learner to co-construct some additional information, then the activity is clas-
sifi ed as interactive (i.e., transactive  collaboration). As an example, suppose 
one learner asks, “As long as we wipe every bit of glass, can we progress from 
bottom to top instead of left to right?” while another learner says, “Maybe 
that would drip dirty water on the clean glass.” That is, they both construct 
information not presented in the video and build off each other’s contribution. 
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This is exactly the kind of co-construction discussed earlier, except that the 
ICAP hypothesis allows two learners to be involved rather than a learner and a 
teacher. When ordered according to effectiveness for learning, the hypothesis 
ranks the four behavior modes as follows: interactive > constructive > active 
> passive. This is equivalent to: collaborate > generate > manipulate > pay 
attention.

According to the ICAP hypothesis, students learn the most when they col-
laborate and the least when they are merely paying attention. The ICAP hy-
pothesis is consistent with a very large number of experiments. For example, 
Menekse et al. (2013) incorporated a topic in materials science as the target 
knowledge. They randomly assigned students to four groups, corresponding 
to the four ICAP modes. The students fi rst took a test to determine how much 
they knew about the given topic prior to studying it (all four groups were about 
the same). Students then engaged in one of the following actions:

• They read a text passage (paying attention group).
• They read and highlighted important sentences within the text (ma-

nipulating group).
• They individually interpreted a graph that described the information 

contained within the text passage without access to the text (generat-
ing group).

• They interpreted the graph jointly with a peer without access to the text 
(collaborating group).

The groups then took a test to see how much they had learned. Test results were 
consistent with the ICAP hypothesis; that is, the collaborating group retained 
the most knowledge, followed by the generalizing, manipulating, and paying 
attention groups. The ICAP framework also hypothesizes cognitive processes 
that underlie the four modes and explains why they exhibit the observed order-
ing of effectiveness.

KLI Framework

The  knowledge-learning-instruction (KLI) framework specifi es three interact-
ing taxonomies of kinds of knowledge, learning processes, and instructional 
methods (Koedinger et al. 2012). One fundamental  underlying claim of this 
framework is that different instructional “treatments” are optimal for different 
kinds of “content” knowledge goals because of how those treatments best sup-
port the particular learning process relevant for that knowledge goal. In other 
words, “ content-treatment interactions” are a common occurrence, whereby 
a particular instructional treatment (e.g., studying lots of examples) aids or 
accelerates learning for certain types of knowledge content (e.g., skills that im-
plement multistep fl exible procedures, such as math or science problem solv-
ing) but slows the learning of other types of knowledge (e.g., second-language 
vocabulary).
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The bottom of Figure 11.3 depicts examples of three broad classes of 
knowledge: facts, rules (i.e., skills), and principles. On the left are three broad 
categories of learning processes:  memory and fl uency, induction and refi ne-
ment,  sense making and understanding. Also on the left are associated in-
structional treatments from “ optimal scheduling,” which enhances memory, 
through “worked examples,” which enhance induction, to “accountable talk” 
(i.e., a collaborative dialogue prompting technique), which enhances sense 
making. The cells indicate cases in which the treatment (rows) was compared 
to a matched instructional control with regard to instruction of the indicated 
knowledge content (columns): +, 0, and – indicate a positive, null, or nega-
tive effect, respectively, of the treatment over the control on student learning 
outcomes. The bottom-left cell, for example, indicates that students learned 
Chinese vocabulary better when adaptive “optimal scheduling” selected their 
tasks, compared to receiving tasks in a fi xed order.

The KLI framework provides empirical evidence for content-treatment in-
teractions as well as a theoretical analysis to predict and explain when and 
why such interactions may occur. It is related to and largely consistent with 
the ICAP theory; however, one important difference is that ICAP does not 
consider as many types of knowledge as KLI, but instead focuses on more 
complex forms of knowledge. As a consequence, the claims made for the ICAP 
framework may only be relevant to “principles” in KLI framework terms. For 
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Figure 11.3 The KLI framework suggests “ content-treatment interactions.” Effec-
tiveness  of an instructional treatment (see “worked examples” row) depends on which 
learning processes it facilitates (e.g., induction) and inhibits (e.g.,  memory) and whether 
those learning processes are necessary (see “geometry rules” column) or not necessary 
(see “Chinese vocabulary” column) to meet the knowledge content goal.
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example, according to KLI, forms of instruction that promote active rather than 
constructive learning may produce better outcomes when the goal involves 
less complex forms of knowledge, such as facts or skills/rules.

KLI and ICAP are directly relevant to ITL when a robot or software agent 
is the teacher and a human is the learner. Both frameworks indicate which 
instructional methods are most likely to work given the target knowledge con-
tent. KLI and ICAP may also be relevant when a robot or softbot is the learner, 
suggesting which instructional strategies and learning processes/mechanisms 
may be most effective for particular task domains.

Models for Task Instruction

Here  we discuss the models that a teacher can hold with respect to an ITL 
learner, including models of the student, the domain/task, and a model of the 
pedagogical approach. We also discuss challenges related to communication 
with regard to models, as well as open modeling questions.

Overview of Models

The teacher in an ITL system (human or machine) must be able to assess the 
student’s current learning state and make decisions that move the learner from 
one state to the next in a way shaped by the goal. This requires the teacher to 
maintain models of both the student and domain. These models may be cre-
ated or evolve throughout a learning and co-construction process, wherein the 
teacher and learner develop an  understanding of their shared world and/or each 
other. The teacher must also maintain and possibly evolve a model of a peda-
gogical approach in order to shape interactions.

The student model itself includes three components, the fi rst of which is 
a model of the learning state, or the “knowledge overlay.” This model incor-
porates a representation of correct knowledge that the student has acquired 
throughout the learning process and a representation of missing knowledge. 
The teacher maintains a model of each student with reference to the domain 
model, which can be very rich and may be represented as an “overlay” over 
the domain/task model. The second component is a model of the student’s mis-
conceptions, and the third is a model (or models) required for  communication 
and interaction. This could include a model of modalities for communication/
interaction (e.g., language, depiction) or abstractions over the level of con-
cepts to communicate.

The teacher also holds a model of the domain/task that is separate from the 
student model. The domain model is maintained in the teacher’s mind and is 
representative of what experts know as well as what intermediate and/or nov-
ice students know. It can also include conceptual alternatives of the task. The 
domain model can change in structure or content over time.
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Learning State Model

The model of the learning state is analogous to the  tutoring system “student 
model,” which refers to information that represents what the student currently 
knows and has accomplished so far. This includes the history of interaction 
over time and is not simply a snapshot of the current state. The process by 
which the student arrives at the current state is important and holds a lot of 
information for the teacher, who is shaping the interactive experience toward 
some learning.

This information serves one or more of the following purposes:

• It assigns or recommends a task for the student to perform next.
• It reports the student’s current state to the instructor.
• It reports the student’s current state to the student.
• It guides the system’s selection of  feedback, hints, or other scaffolding.

Sometimes the student model contains only simple information. For instance, 
if the tutoring system’s only use for the student model is to meter the progres-
sion through a linear sequence of tasks, then the student model need only re-
cord where the student is located in the task sequence. If the system’s only use 
for the student model is to decide when the student has correctly accomplished 
three of the previous four tasks, then it only needs to track how many of the last 
four tasks have been completed.

However, many systems incorporate student models that are based on as-
sessing what knowledge students have learned so far, rather than just which 
tasks they have completed. Such systems often divide to-be-learned knowl-
edge into pieces, typically referred to as “knowledge components” (if they are 
relatively small) or “instructional objectives” (if they are larger). If a tutoring 
system incorporates knowledge components, it often represents which ones a 
given student knows using a simple data structure called an “overlay.” In its 
simplest form, an overlay is a single binary variable (mastered/unmastered) 
per knowledge component; another common representation is a value between 
0 (completely unmastered) and 1 (completely mastered). It is traditional (al-
beit confusing) to refer to a student model that uses only correct knowledge 
components as an “overlay” model, whereas a student model that includes 
both correct and incorrect knowledge components is referred to as a “buggy” 
student model.

Model of Misconceptions

The tutoring agent in an ITL system may also maintain a model of student mis-
conceptions. This model can contain the misconceptions held by multiple stu-
dents or those of a particular student. If the tutor agent understood the learner’s 
misconceptions, the tutor could potentially be able to exploit this knowledge 
to enhance the effectiveness of its teaching; this has formerly been studied as 
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the “ diagnostic remediation hypothesis.” Evidence, however, rejects this hy-
pothesis, at least under certain conditions. Study results from Putnam (1987) 
and Siler and VanLehn (2015) have shown that human teachers rarely utilize 
knowledge about students’ misconceptions, even when this information is ex-
plicitly presented to them. Other studies provide evidence that use of knowl-
edge about misconceptions does not help students to learn algebra (Sleeman 
et al. 1989). This may be due to the fact that misconceptions rarely result in 
systematic errors. Researchers have also found that the explicit remediation 
of misconceptions (or “mind bugs”) can have a positive effect when learning 
about physics (Albacete and VanLehn 2000).

Although evidence of the usefulness of knowledge about misconceptions 
is mixed, and greatly depends on how systematic the errors are, it should be 
noted that human teachers maintain several conceptions about how a learner 
works. This is crucial for adapting language and level of explanation to a tar-
get audience (e.g., children of different ages or adults with different levels of 
expertise).

Task Domain Models

In  the expert, or domain, model of ITL, the system stores its knowledge rel-
evant to solving tasks within the given domain. In a subclass of intelligent 
tutors, sometimes called “cognitive tutors,” there is a commitment that the 
domain model is a “cognitive model,” one that contains knowledge able to pro-
duce a broad range of possible solutions for domain tasks, including variations 
in expert solutions as well as in student solution strategies, both correct and 
incorrect. This cognitive model may also include knowledge about a progres-
sion (or “learning trajectory”) of approximate conceptions or misconceptions. 
For example, in human biology, the model may include a misconception that 
the human circulatory system consists of a single loop involving only the heart, 
or of one loop involving both the heart and lungs, in addition to the correct 
conception that there are two loops: one involving the heart and one involving 
the lungs.

This domain model can provide adaptive tutoring to students at multiple 
temporal grain sizes of interaction and  adaptivity. Using a model-tracing al-
gorithm, the tutor can monitor student  task performance in comparison with 
the task performance the domain model can generate (i.e., a kind of plan rec-
ognition in AI terms). Steps taken during a student’s performance of the task 
are correct when they match application of correct knowledge in the domain 
model and are incorrect when they match application of incorrect knowledge 
(in which case specifi c feedback can be provided to explain why the given step 
is incorrect) or when there is no match (in which case a simple error feedback 
indication can be provided). When students have diffi culty completing a task, 
they can ask for an instructional  explanation  or demonstration of the next step, 
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which would provide the means for students to learn how to perform these 
steps on their own in the future.

Model tracing of each student step yields an “overlay” on the domain 
model, indicating the probability that each knowledge component is known 
for each student. We refer to this above as the model of the student learning 
state. A knowledge-tracing algorithm updates these probabilities as students 
perform correct or incorrect steps during task performance, and the results 
are used to adapt future task selection to facilitate cognitive mastering of the 
correct knowledge components. For cognitive tutors, the tutoring interaction 
is dependent on the completeness and quality of the domain (or “cognitive”) 
model. Thus, the broadest loop of adaptivity is to use student performance data 
to identify fl aws in the domain model (e.g., common learning challenges that 
are not independently represented) and to improve it and the associated task 
design (Aleven et al. 2016).

Pedagogical Approach/Expertise Model

One of the goals of ITL systems is to design a robotic agent capable of learning 
a task from a human tutor, performing the task, and potentially to teach the task 
to a different human learner. Task knowledge must, therefore, be combined 
with didactic/pedagogical knowledge. To realize this goal, one possibility is 
that the agent reuses the teaching strategies incorporated when the agent itself 
fi rst learned the task. Alternatively, a didactic/pedagogical model could be in-
cluded in the agent; the agent would then apply this model to the task knowl-
edge to generate instructions or other tutoring aids.

Model-Based Scheduling

Thus far, the intelligent tutoring system research community has focused pri-
marily on curriculum adaptation (i.e., which content or problem to present 
next) and support adaptation (particularly with regard to changing the type of 
feedback provided) based on a student model. These adaptations address the 
“what” and the “how” of instruction; however, there is a new, promising area 
of research and development that focuses on the “when” of instruction (Gluck 
et al. 2019). Here, the emphasis is on personalizing the scheduling of learning 
events based on performance history. The adaptation is conducted at the level 
of individual knowledge components, a collection of which would comprise 
profi ciency in problem-solving or task completion.

Personalized scheduling of learning depends on the availability of a com-
putational model of the dynamics of human learning systems (Raaijmakers 
2003; Pavlik and Anderson 2005; Walsh et al. 2018). The general idea is to 
calibrate parameters based on accumulated empirical evidence, then predict 
forward in time to determine a good schedule for the next study or practice 
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opportunity. What represents a “good” schedule depends critically on whether 
the  bias is toward rapid initial acquisition or longer retention of information. 
This trade-off relates to a phenomenon known as the “spacing effect” (Cepeda 
et al. 2006; Benjamin and Tullis 2010). If rapid acquisition is more important, 
then cramming learning events into a tightly massed sequence is preferable. 
This will generally accelerate the initial acquisition of that material but will 
also reduce the duration of retention. If better retention is more important, then 
spacing repeated learning events over a longer period of time is preferable, up 
to a point. If temporal spacing is too long early on in the process, then people 
forget the information more quickly than they learn it, and the potential advan-
tage of distributing the practice over time is lost.

The implication for ITL is that these predictive, adaptive personalization 
capabilities can be implemented in the machine intelligence and applied in any 
context in which one of the agents participating in the interaction is a computer.

Communication with Respect to Models and Asymmetries between 
Human and Machine Learners

One key to a successful interaction and, by extension, to a successful tutoring 
interaction  is that the teacher and learner share suffi ciently similar  communi-
cation processes and concepts; this is often referred to as “ common ground” 
(Clark and Brennan 1991). When the teacher is tutoring, an implicit or explicit 
assumption is made by the teacher that the learner can correctly interpret the 
teacher’s communicative signals. This requires a shared set of communicative 
signals to be interpreted in a manner considered successful by the teacher (or 
another external observer).

Systems for tutoring humans are designed based on assumptions of the stu-
dents’ knowledge base (e.g., what the learner knows, what the learner does not 
know, common ground, language, how the learner learns). When designing 
a machine to teach a human, we leverage substantial knowledge about how 
humans communicate and learn. However, when the learner is a machine, the 
validity of many of these assumptions is weakened or disappears. When a hu-
man teaches a machine, it is more diffi cult to make a priori assumptions about 
the types of communication available. Systems capable of constructing and 
building upon a model of language are crucial. Depending on the complexity 
of the learned task, a signifi cant effort may be required to design communica-
tive modalities that allow instructions and knowledge to be transferred from a 
human teacher to an artifi cial learner. Forbus et al. (2017) demonstrated a sys-
tem that integrates visual processing, spatial representations, and conceptual 
knowledge; for the system to learn successfully from a human tutor, it needs to 
establish a common set of communicative signals (language and visual sketch-
ing, in this case) and requires access to the ontology of the world.

Similarly, when a machine teaches a human, the machine requires a 
model of the human learner, but it is challenging to encode all the relevant 
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information. Asymmetries also exist between the representation and use of the 
learned knowledge. A human may learn to perform a task and use this as a basis 
to teach the task to another learner. A machine may be able to teach based on its 
learning mechanism, or teaching must be addressed separately.

Human–robot interaction exaggerates the problems associated with asym-
metry, as in the  correspondence problem. First identifi ed in the context of  imi-
tation learning (see, e.g., Nehaniv and Dautenhahn 2007), the correspondence 
problem relates to the diffi culty of mapping actions from one body to another. 
If a human demonstrates a skill to an agent with a dissimilar body plan or dis-
similar actuation (e.g., a robot arm with fi ve degrees of freedom that is learn-
ing to pour a drink by observing human demonstrations), how is the learning 
agent to map this demonstration to its own capabilities? The  correspondence 
problem also holds in ITL: while the interactive element allows skill transfer 
to be scaffolded more gradually, the correspondence problem still requires a 
solution.

Methods for Task Instruction

There  are myriad methods of instruction that are natural to human–human in-
teraction, but whether emulation of these methods can or will support ITL is 
an open question. These instruction methods include signal-focused methods, 
which involve the modulation of signals such as speech and gesture, and di-
recting/attending behaviors, such as  pointing as well as other methods such 
as coupling of language with action. All instruction methods involve a persis-
tent process of monitoring, adjustment, and  feedback based on the projected 
cognitive process of the given student. This persistent process is important 
for the teacher’s choice and adjustment of feedback type, including timing 
considerations.

Signal-Focused Methods

Developmental studies have addressed some of the scaffolding methods that 
people use to improve understanding of action and speech: motherese, mo-
tionese,  gesturese. Collectively known as the “eses,” these methods may be 
of fundamental interest to ITL. As techniques used to make instruction more 
effective and effi cient with children, they may generalize to make instruction 
more effective and effi cient with machines:

• Motherese, parentese, or child-directed speech refers to modifi cations 
in verbal behavior (Dominey and Dodane 2004). These modifi cations 
can be performed on all linguistic levels, including prosody (speaking 
with higher pitch and long pauses), semantics (making references to 
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here and now, regular use of repetition, lower levels of abstraction), 
and grammar (shorter, simpler sentences).

• Motionese concerns the performance of actions. As reported by 
Rohlfi ng et al. (2006), child-directed actions are performed with 
rounder (smoother) movements and more frequent pauses.

• Gesturese refers to how caregivers modify the frequency, type, and 
duration of their gestures when they talk to children. Grimminger et al. 
(2010) reported that gesture frequency increases when teachers issue 
instructions for diffi cult tasks, or when they instruct children at risk 
of delayed language development (compared to typically developed 
children).

Learner feedback is crucial in these signal-focused methods and must be kept 
in mind when applying them to interactions with a machine. As demonstrated 
by Lohan et al. (2012), it is important for a robot to behave in a contingent 
manner and react in a timely manner to the communications initiated by the 
tutor. Fischer et al. (2011) indicate how tightly the “eses” are tailored to the 
learner: if the robot reacts to the tutor’s instructions using visual behavior 
alone (e.g., eye gaze), then the tutors will modify their behavior in this modal-
ity. Consequently, behavior modifi cations can be observed in the form of “mo-
tionese” (visually perceptible), not in “motherese,” as this would most likely 
require a verbal response from the robot. This research suggests that if a robot 
indicates sensitivities toward interaction in the form of a contingent behavior 
and particular modalities of communication, then tutors can provide benefi cial 
input in the form of parentese, motionese, and/or  gesturese.

Showing, Pointing, and Depicting

When children are already experienced with regard to interaction, their learn-
ing can be guided through “social cues” embedded in a sequence of particular 
actions. For instance, a pointing gesture is embedded as a social cue within a 
referential frame (e.g.,  eye gaze, pointing to an object, labeling it). Such se-
quences (pointing, showing, depicting) engage children to guide their  attention 
and actions toward a specifi c goal.

When showing an object or  performing a task, language and action of-
ten are synchronized such that they reinforce each other. This intermodal 
redundancy foregrounds key information (Bahrick et al. 2004) and creates 
meaningful “acoustic packages” (Hirsh-Pasek and Golinkoff 1996) to facili-
tate  comprehension and learning. It is a practice that is generally useful in 
communication and is especially helpful with young children. Among infants 
who cannot yet understand semantics, labels or words were found to high-
light the commonalities between objects and situations, facilitate object cat-
egorization, and override the perceptual categories of objects (Rohlfi ng and 
Tani 2011). Conversely, when action is provided concurrently with speech, 
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it seems to embody the meaning of language, even in young infants (e.g., 
Nomikou et al. 2017).

Directing, Performance Modeling, and Peer Performance

Musical instrument instruction is an interesting practice to consider in the con-
text of ITL, as it involves humans executing physically demanding tasks in the 
real world, with multidimensional success criteria. The ontology of feedback 
on music instrument instruction, provided by Yee-King et al. (2014), indicates 
the diversity of success measures in music instrument learning (e.g., timbre, 
groove, and articulation). Musical instrument tutors employ three key tech-
niques that can be applied in ITL scenarios:

1. Directing involves the student playing a piece of music, with the tutor 
providing verbal and gestural directions during the performance, simi-
lar to a conductor. For example, the tutor might say “build up the speed 
now,” or “careful with the fi ngering for the right hand.” The informa-
tion is highly contextual and can be directly acted upon by the student 
to improve performance. This approach could apply to an ITL scenario 
in which a machine is learning to set a table: “careful with the place-
ment of the fork, as there’s no space for the plate.”

2. Performance modeling involves the tutor playing the instrument and 
presenting the student with both good and poor examples of how to 
play sections of a given piece of music. In the context of ITL, this cor-
relates to a tutor providing a set of carefully chosen, labeled examples.

3. Peer performance involves students performing a complete piece for 
an audience of their peers as well as the tutor. At the end of the perfor-
mance, the peers are encouraged to give feedback to the performers. 
Peer performance is important for the performer, as it takes place in 
a context where failure has a high cost (embarrassment) and closely 
mirrors the actual context in which music is commonly performed. It is 
also important for the listeners, as they learn to discern between good 
and poor execution. Both performer and listeners gain a wider view of 
the performance: What effect did it have on an audience? How does the 
sound change when performing in a concert hall? How does a person’s 
performance respond to the pressure of being observed? This raises the 
intriguing idea of one robot washing a window while others critique its 
performance.

Monitoring, Adjustment, and Feedback

Feedback  is especially important, perhaps essential, to almost all instruc-
tional interactions. Feedback can be provided/received at any time during 
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a task: at the beginning to inform upcoming action on the basis of prior 
performance, in real time during  task performance, and at the end when the 
task is complete. Many details need to be considered when providing and 
receiving feedback (e.g., timing, synchrony of cues, task structure, conven-
tional social norms).

Feedback received by a teacher or learner can trigger a process whereby the 
agents interact to repair incorrect inferences or clarify ambiguities. Feedback 
received by the learner can also trigger a feed-forward process, whereby the 
learner is able to apply feedback received from a teacher to future attempts 
at completing a task, in the absence of the teacher’s guidance (Hattie and 
Timperley 2007). The feed-forward process maps across several desirable as-
pects of ITL as follows:

• It results in an effi cient use of instructor time, since feedback is reused.
• It signifi es a transition on the part of the student from being uncon-

sciously incompetent to consciously incompetent: students can detect 
their own mistakes and use previously received feedback to rectify them.

• The student switches his/her role to that of his/her own instructor.
• It includes metacognitive aspects, wherein the student becomes aware 

of his/her own learning process.

During human–human interactions for learning and teaching, particularly be-
tween parents and infants, monitoring the learner is important. Teachers modify 
their behavior online in a moment-to-moment co-construction toward a goal 
that is shared with the learner, with interactional loops between teacher and 
learner, such as between the teacher’s hand movements and the learner’s eye 
gaze (Pitsch et al. 2014). Study results have shown that these processes trans-
late to human–robot interactions, with the robot as the learner and the human 
as the teacher, under certain conditions (Vollmer et al. 2009; Pitsch et al. 2013). 
These conditions include a certain appearance and social behavior (such as 
feedback or contingency) on the part of the learner that forms a  social  interac-
tion interface for the human to employ during teaching. It has been shown that 
the way in which an action demonstration is instantiated and how the action is 
structured (in terms of highlighting what about it is important when teaching 
the action to a robot) strongly depend on the learner’s feedback (Vollmer et al. 
2014). In a case involving a robot learner, these interactional loops with the 
adaptive behavior of the teacher could be exploited for the benefi t of learning. 
The robot could, through its feedback, elicit certain adaptations to the teacher’s 
behavior, allowing for testing of a hypothesis about, for instance, the impor-
tance of a certain part of a demonstration.

The lessons gained through human–human learning/teaching interactions 
are most clearly relevant to robot learning, although some of these teaching 
methods have analogous forms in the virtual world of  graphical user interfaces 
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within which software agents learn. The signal-focused and directing and at-
tending methods discussed above may not be implemented in the same way in 
a graphical user interface, but similar implicit communicative functions can be 
achieved in other ways. Analogous to a robot fi nger pointing at (or an  eye gaze 
directing attention toward) an important element or feature within an object 
or scene, features may be highlighted through other means, such as bolding, 
circling, or underlining. Such “feature focusing” has been used to enhance hu-
man learning; for instance, to help teach Chinese symbols by highlighting se-
mantically meaningful components (known as “radicals”) within them. It has 
also been used to aid machine learning of grammatical structure in algebra (Li 
et al. 2015) by highlighting elements that interrelate (e.g., highlighting “–3” 
in “–3x”). Do other aspects of human–human learning/teaching interactions 
have relevance within the virtual world of agent learning? This is an interesting 
question that awaits further exploration.

Learning by Teaching

When the primary goal is for a (human) student to learn a task, studies have 
demonstrated that it is often more effective to assign a human the role of a 
teacher, who then must tutor a computer agent by demonstrating, for example, 
how to solve algebra equations while providing feedback about the attempts 
(Chase et al. 2009; Matsuda et al. 2013). In these “teachable agent” applica-
tions, the computer agent takes a quiz after being instructed by the human, and 
the agent’s performance provides students with feedback on the ways in which 
they succeeded or failed to teach the agent. This method of learning proves to 
be an effective “ego-protective buffer” whereby students’ knowledge gaps are 
revealed by their agent’s performance rather than their own.

When the primary goal is for an artifi cial agent to learn a task, it may also 
be valuable to swap human and computer roles so that the agent becomes the 
teacher and the user becomes the learner. One such scenario is the use of the 
ITL agent to help teach or “entrain” humans to use the language understood 
by the ITL agent. Consider a situation in which the human says, “Start up my 
mail” to the agent, rather than “Open the email app.” In response, the agent 
might say, “Well, show me,” and the user subsequently succeeds in teaching 
the agent via demonstration. Key to this example, the learning agent then 
switches into the teaching role and explains the procedure it learned back to 
the user, using terms the agent understands (e.g., “First, I opened the email 
app. Then, …”). Upon observing this explanation, the user may have a bet-
ter chance in subsequent attempts of using language patterns that the agent 
understands. In addition, the agent has had the opportunity to expand its 
vocabulary.

From “Interactive Task Learning: Humans, Robots, and Agents Acquiring New Tasks through Natural Interactions,” 
edited by K. A. Gluck and J. E. Laird. Strüngmann Forum Reports, vol. 26,  

J. R. Lupp, series editor. Cambridge, MA: MIT Press. ISBN 978-0-262-03882-9.



188 J. A. Shah et al. 

Closing Thoughts

Structural and Adaptive Perspectives on Improving Instruction

Instructional  improvements based on  education technology (including ITL) 
can be broadly classifi ed as adaptive, structural, or both adaptive and struc-
tural (VanLehn 2016). Instructional improvement is adaptive if the content and 
structure of the new instruction are the same as in the baseline instruction, but 
the new instruction interacts with learners differently based on their perfor-
mance. An instruction improvement is considered structural if the structure, 
or plan, of the instruction differs signifi cantly from the baseline instruction. 
Consider the following examples:

• Purely structural: A new, three-week module in a middle-school sci-
ence class is revised to focus on accessing data obtained from a real 
radio telescope.

• Purely adaptive: An organic chemistry practice system contains the 
same large set of problems as before, but the system now monitors the 
students’ successes and failures, and recommends the best problem to 
address next.

• Both structural and adaptive: A  collaborative learning system has stu-
dents working in small groups to build an economic model. The system 
monitors their interactions and sends advice covertly to group mem-
bers who are not speaking up enough or who are dominating the group 
dynamics.

Regardless of whether one is designing instruction that is adaptive, structural, 
or both, there are several choices to consider, including demonstrating, telling 
(through verbal instruction), and providing feedback (e.g., as accomplished 
through depicting, showing, pointing to, or coupling language and action). 
Instructional strategies include numerous choices with regard to structuring the 
environment, choosing learning examples, comparing or contrasting tasks or 
problems, making sequencing or curriculum decisions, and determining how 
elaborately to expose the steps and whether, when, and how to provide reward 
or feedback (Koedinger et al. 2013).

Historical Perspective on Programming and Implications for ITL

In the early days of  programming, FORTRAN, COBAL, and LISP were the 
only languages available. Many people thought that redesigning the languages 
would make programming signifi cantly easier. This led to ALGOL, PASCAL, 
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and eventually myriad languages currently in place, which may be a little 
easier to use than the fi rst languages, but certainly did not vastly simplify 
programming. Similarly, natural language programming, graphical program-
ming languages, and programming-by-demonstration did not have signifi cant 
impacts, as they proved useful only within a limited range of programming 
problems.

Perhaps the biggest advance in software engineering has been the recogni-
tion and systematic development of  agile programming methods (Beck et al. 
2001). Prior to this recognition, the orthodox method of programming (now 
called “waterfall”) involved three phases:

1. Writing detailed specifi cations in natural language, and sometimes dia-
grams (e.g., fl ow charts; UML).

2. Converting the specifi cation into a giant program.
3. Testing the program.

In contrast, the agile method divides the overall function of the desired pro-
gram into many small pieces, and follows the following three-step approach to 
develop each piece:

1. Write a specifi cation of the new piece of  functionality, called a user story.
2. Add that function to the program.
3. Test the new function while also testing that the preexisting functions 

remain intact.

Nowadays, the waterfall method is typically used when developing a pro-
gram that has been previously developed but needs to be repurposed for a 
new situation. Under these circumstances, the complete functionality of the 
program is well known, so the specifi cations can be accurate and complete. 
Most other programming is performed using  agile programming, because it 
allows the ultimate users of the program (often called “clients”) to use the 
emerging program as functions become available, and to provide new user 
stories or revisions to old user stories. In other words, agile programming is 
more interactive.

The ITL vision is similar to these historical features of programming meth-
ods in many respects. First, it is interactive: like agile programming, the in-
teractivity of ITL is probably the most powerful simplifi cation of the overall 
job of creating engineered activity. Second, ITL combines natural language 
and demonstration as ways of expressing user stories. A skeptic may note that 
natural language and demonstration provided only limited simplifi cation of 
traditional programming and that perhaps an implication of this is that they 
may have limited importance for ITL, as well. However, it is important to 
keep in mind that the traditional programming model of machine as a tool 
(rather than a partner) and implementation for niche specialization (rather than 
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generalized interactive learning of new tasks) inherently limited the potential 
utility of natural language and demonstration.

One way to understand ITL’s potential is to consider its scope. It is clearly 
not intended to replace traditional programming for large systems; ITL will 
most likely replace scripting, writing simple programs of perhaps a page or 
two. More specifi cally, it may fi t best in the middle of a continuum of ways 
that users can express their intentions to computers. On the simple end of this 
spectrum are menus that allow a user to choose from a small set of predefi ned 
behaviors. Next, in terms of simplicity, are forms that have a set of menus, 
type-in boxes, buttons, and other controls to allow users to express somewhat 
more complicated intentions. To indicate intended behaviors that go beyond 
those readily designated by form-based user interfaces, we currently write 
scripts, demonstrate the intended behavior to a macro-writer, or both. This ca-
pability is likely to be replaced by ITL. The next step up in terms of complexity 
will likely require traditional programming.

The same complexity continuum applies even when all agents are human, 
such as when an employer describes intended behaviors to employees. On the 
simple end, a short phrase suffi ces to explain the boss’s intentions (e.g., “Hold 
my calls.”) On the more complex end, modern organizations use formal lan-
guages, often called business process languages, or procedure manuals. An 
ITL system would most likely incorporate intended behaviors “taught” to hu-
man workers through a short email message or narrated demonstration.

Based on these analogies, it seems likely that ITL systems may address a 
“sweet spot” within the continuum of complexity, resulting in many potential 
applications. Moreover, these applications are poorly served today because the 
scripting/macro-demonstration process is manually intensive.

Similarities and Differences between ITL and Human/Animal 
Teaching and Learning

To clarify similarities and differences between machine and human/animal 
learning, consider the following examples. The fi rst involves a “cat fl ap” (i.e., 
a portal that allows a cat to enter or exit a house at will): through a system of 
rewards (and some patience), most cats learn to open and pass through the cat 
fl ap. This is an example of operant conditioning. The second involves standard 
computer programming: a computer is initially unable to perform a given task 
(e.g., play chess), so the user provides it with a set of instructions. Initially, the 
instructions are of poor quality, and the computer is still unable to perform the 
task. Responding to this failure, the user continually updates the instructions 
until the computer succeeds. This scenario is both interactive and involves the 
learning of a task.

Note the cat fl ap example does not involve intelligent behavior or reason-
ing; it is a primitive form of teaching (operant conditioning). Once learned, 
however, the cat would be quite fl exible with regard to its new task; that is, 
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confronted with a new cat fl ap or the same cat fl ap in another door in the same 
house, the cat would most likely succeed in going through the fl ap. Also, the 
cat can learn many other tasks through operant conditioning without interfer-
ing with its ability to maneuver through cat fl aps. In contrast, the computer 
programming example involves hardly any learning by the computer, whereas 
the task for the teacher is immense.

Humans and animals have many advanced, fi ne-tuned, and mutually aligned 
learning mechanisms. Human–human ITL begins with learning through rein-
forcement in the fi rst months of life, followed by demonstration and  imitation, 
and later on through exploration, instruction, and  reasoning. It is quite clear 
that our current AI systems and robots lag far behind in this respect: they may 
be very good at applying a single learning mechanism (e.g., learning through 
examples or parameter optimization), but the broad integration and application 
of multiple learning mechanisms in complex, real-time task learning and per-
formance remains elusive. We aspire to create artifi cial systems that combine 
diverse mechanisms for  co- constructive task learning and instruction.
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