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Abstract

Studying the essence of  interaction requires  task environments  in which changes may 
arise due to the nature of the environment or the actions of agents in that environment. 
In dynamic environments, the agent’s choice to do nothing does not stop the task en-
vironment from changing. Likewise, making a decision in such environments does not 
mean that the best decision, based on current information, will remain “best” as the task 
environment changes. This chapter summarizes work in progress which brings the tools 
of experimental psychology,  machine learning, and advanced statistical analyses to bear 
on understanding the complexity of interactive performance in complex tasks involving 
single or multiple interactive agents in dynamic environments.

 Introduction

The shape of a gelatin dessert cannot be predicted from the properties of gelatin, 
but from the shape of the mold into which it was poured. If people were perfectly 
adaptable, psychology would need only to study the environments in which be-
havior takes place (Simon 1992:156).

[B]ehavior cannot be predicted from optimality criteria alone without informa-
tion about the strategies and knowledge agents possess and their capabilities 
for augmenting strategies and knowledge by discovery or instruction (Simon 
1992:157).
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Auch zum Zögern muß man sich entschließen. [Even the hesitation you have to 
decide.] (Lec 1962)

Simon had it easy. Much of the world he studied moved in discrete steps, as 
in the  Tower of Hanoi (Anzai and Simon 1979; Simon 1975, 1989) or Chess 
(Gobet and Simon 1996; Simon 1989; Simon and Chase 1973; Simon and 
Gilmartin 1973). In choosing such tasks, he revealed to us the foundation on 
which cognitive science could be built and forced us to consider not just the 
world in our head, but how the capabilities and capacities in our heads were 
shaped by the mold of the world in which we found ourselves.

The gelatin mold analogy that Simon so liked leads us, perhaps unwittingly, 
to think of the world as static and ourselves (and maybe the next generation of 
our creations) as the only active agents. Yet if we stop for too long, it will rain 
and we will be forced to seek shelter. If we keep working hard, we will become 
tired and hungry and need to seek food and a place to rest. Indeed, perhaps we 
are less proactive and more reactive to changes in our task environments than 
we would like to believe.

In this chapter, we discuss our recent work with single and multiple agents 
seeking to accomplish complex tasks through a series of sequential choices 
made in dynamic task environments. In all cases, the choices are presented by 
an active task environment and the goal is to use our cleverness to deal with 
that environment and survive as long as possible. In all cases, even doing noth-
ing requires a decision to do nothing.

Although many of the other chapters in this volume discuss humans inter-
acting with robots, or the more general framework of two interacting agents 
learning from each other (Mitchell et al., this volume), we see the essence of 
interaction as not defi ned primarily by biology (or the lack thereof) or agency. 
Instead, we propose that the essence of interaction lies at the intersection of (a) 
the skills and abilities of one or more individual agents, (b) the defi nition of 
the task, and (c) the nature of change in autonomously dynamic task environ-
ments. A key point of emphasis is that intelligent agents learn from interaction 
with their environments just as they do from each other. The examples in this 
chapter serve to highlight this insight and its importance in a broader concep-
tualization of interactive task learning (ITL).

 Background

It seems to me therefore that mental training in schools, in industry and in mor-
als is characterized, over and over and over again, by spurious limits—by levels 
or plateaus of effi ciency which could be surpassed. The person who remains on 
such a level may have more important things to do than to rise above it; the rise, 
in and of itself, may not be worth the time required; the person’s nature may be 
such that he truly cannot improve further, because he cannot care enough about 
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the improvement or cannot understand the methods necessary. But sheer abso-
lute restraint—because the mechanism for the function itself is working as well 
as it possibly can work—is rare. ( Thorndike 1913:181)

The task environment and the properties of the human cognitive, perceptual, 
and motor systems act as soft constraints on human behavior (Gray et al. 2006). 
With all else equal, the human cognitive system tends to select the fastest way 
it can to get a job done, with the result that no one modality is privileged and 
the mix of methods selected are sensitive to the burden placed on cognitive, 
perceptual, and motor components of human cognition. However, nothing is 
simple about human cognition. Once a method is acquired and used, it receives 
the benefi ts of knowledge compilation (Anderson 1987), which may make it 
faster and more effi cient than a newer but unpracticed (and thereby “uncom-
piled”) method even though, with practice, the effi ciency of the newer method 
would surpass the old. Unfortunately, this is a fairly common, human situa-
tion. If the unpracticed new method is slower or otherwise less effi cient than 
the compiled older method then, as Thorndike observed, it can be exceedingly 
diffi cult to entice people to “care enough about the improvement” to put in the 
time and energy needed to acquire the more effi cient method.

A sterling example of this is the time and effort that people who are visu-
ally guided typists (a.k.a. “hunt and peck,” “eagle fi ngered”) need to spend if 
they wish to become touch typists. Indeed, the arduousness of this transition, 
together with the drop in performance while learning the new method, is the 
main source of recidivism (Yechiam et al. 2003). This pattern of an “easy” but 
suboptimal method interfering with the acquisition of an initially more diffi -
cult, but ultimately faster method has also been shown to be the case for people 
who fi rst acquire simple menu-based methods for computer-based tasks and 
are then taught faster scripting-based methods (Cockburn et al. 2014; Yechiam 
et al. 2004). Fu and Gray (2004) coined the term “stable suboptimal perfor-
mance” in the context of a study in which an expert architect was shown to 
have imposed the sequence of steps from his long-established paper and pencil 
drafting practices onto his current architectural CAD/CAM system.

Our recent work builds on the soft constraints hypothesis (Gray et al. 2006) 
and the concept of stable suboptimal performance (Fu and Gray 2004) to ex-
plore the elements of extreme expertise in complex, interactive behavior in 
dynamic task environments.

 Framing the Work: Plateaus, Dips, and Leaps

In studying the  behavior of people who become expert performers, we must 
look beyond group measures and focus on the behavior of individuals; that is, 
at their explorations, failures, and successes as they strive to become experts. 
For example, we (Destefano 2010; Destefano and Gray 2008) had people play 
the complex game of  Space Fortress (Donchin 1995; Mané and Donchin 1989) 
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across 31 sessions of 8 games per session (248 games total). Averaging the 
data across hours and across players produces the classic performance curve 
shown in Figure 10.1a: with few exceptions (Anderson 1987; Fitts 1964; 
Newell and Rosenbloom 1981), performance improves steadily with practice. 
Unfortunately, as shown in Figure 10.1b, this smooth average represents no 
player’s actual performance. Although each of our 9 players shows improve-
ments over time, these improvements are not smooth: each individual curve is 
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Figure 10.1 Space Fortress skill acquisition curves. (a) Mean performance per hour 
for all 9 players across 31 hr. (b) Actual scores for each individual player. To keep the 
plots compact, the early games for the lowest scoring players (b) are truncated for hours 
1–4. As is clear, the mean performance shown in (a) does not represent the progress of 
any individual player (b). From Destefano and Gray (2016).
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more notable for its plateaus, dips, and leaps (Gray and Lindstedt 2017) than 
for smooth and steady improvement with practice.

Following  Thorndike (1913), we distinguish between “spurious limits...
which could be surpassed” and limits due to “the mechanism for the func-
tion itself” (Gray 2017). We call the former plateaus and the latter asymptotes. 
Hence, a new method for completing an old task results in the overcoming of 
a plateau, whereas an improved tool or a general enhancement of some sort to 
a brain area raises an asymptote.

The plateau versus asymptote dichotomy is often clear in hindsight when 
we can show that individuals performing at different skill levels are doing 
different things. A paradigmatic example is the distinction in high jump-
ing between the Scissors and Straddle versus the Fosbury Flop techniques 
(see Figure 10.2). In the 1960s, performance in high jumping appeared to be 
topping out (in our terminology, it was thought to be asymptoting) as only 
incremental increases (measured in millimeters) in world records were being 
realized due, primarily, to a larger participant pool and better physical train-
ing. Then Dick Fosbury came along in 1968, “fl opped” and smashed world 
records. This made it clear, in hindsight, that prior high jump performance had 
plateaued due to the method being used, not asymptoted due to an inherent 
limit in how high humans can jump.

There are three types of activity capable of moving human performance off a 
plateau: (a) method invention, (b) method development, and (c) practice (Gray 
and Lindstedt 2017). We argue that method invention and method development 
are often (but not necessarily) signaled by dips in individual performance, and 
that the implementation of a successful new method may be signaled by a per-
formance leap that takes behavior well beyond the incremental improvements 
available through regular practice.

(a)

(b)

Figure 10.2 Techniques in high jumping: (a) scissors and straddle and (b) Fosbury 
fl op. Figure used with permission from Carlos Lopez.
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Techniques: Changepoint Analysis

With  the  plateaus, dips, and leaps (PDL) framework guiding our work, we 
have attempted to develop tools to help automate the identifi cation of change-
episodes; that is, periods in which the learner discovers or invents new meth-
ods in individual performance (Destefano and Gray 2016; Gray and Destefano 
2016). Although our current techniques are either not suffi ciently intuitive or not 
suffi ciently automated, we can provide an example of what we are trying to do.

The essence for our use of changepoint analysis lies in comparing mul-
tiple performance factors within the same individual at the same moment in 
time. This requires detailed data collection with timestamping. Figure 10.3 
plots three factors (two features and one score)1 for one Space Fortress player 
across each of the 248 games that he played.

 Figure 10.3 uses the intuitive changepoint analysis method (Gray and 
Destefano 2016) in which a slope is computed for each factor (feature or mea-
sure) of interest. For this fi gure, we then computed the running slope across 
each of the fi ve games (i.e., games 1–5, 2–6,..., 244–248) of Space Fortress 
for that factor.

The horizontal line in each of the three plots is the normalized slope across 
all 248 games for that factor and that player. It is always plotted at zero. The 
other lines plot the running slope for each 5 games as deviations from the over-
all running slope. Hence, upward sloping lines represent an increase in a factor 
whereas downward sloping lines represent a decrease. In general,

• when all three factors move down at the same time, the player is prob-
ably asleep or distracted,

• when all three follow each other up and down, it is hard to conclude 
anything, but

• when some move up at the same time that others move down, that is 
interesting.

Hence, in Figure 10.3 the two gray bands were added by the analyst to high-
light periods of interest; namely, periods in which some of these three factors 
were moving up while others were moving down.

The leftmost gray band (games 71–77) highlights periods of discrepancy 
between dips and leaps in Fortress Kills and those in Mine Kills. During this 
period the player discovers the following:

• If you kill the Fortress fast enough (the leap in FortKills between game 
71–72), mines will never appear.

1 For Space Fortress, there are four scores that the player sees as s/he plays each game. We also 
collect data on approximately 30 features of game play.
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• By preventing the mines from appearing, your mine kills dip drasti-
cally (MineKills between games 71–72) as do the total points earned 
(TOTAL at game 72).

• A player thus invents, implements, tests, but ultimately rejects this 
strategy.

Games 137–160 are also highlighted (the vertical black line through the middle 
of this period is merely a visual aid for the reader). During this period, our 
player discovers and implements a strategy that was new to us:

1. Shoot the Fortress as quickly as possible to increase its vulnerability to 
“9” (without  shooting it so quickly that its vulnerability resets).

2. Wait for the mine to appear.
3. Manage the mine as a “normal” mine. (Space Fortress has two differ-

ent types of mines which need to be killed in different ways.)
4. Killing the mine gives you points and also increments Fortress vulner-

ability by “1” making it eligible to be killed.
5. Finally, double-shoot the Fortress as quickly as possible.

Incrementing vulnerability this way saves you the cost of “one” shot while giv-
ing you points for destroying mines.

As can be seen in this gray-banded area, across this period of thirteen Space 
Fortress games (each dot is a separate fi ve-minute game) the total score per 
game fl uctuates wildly. As the score stops decreasing and begins to increase 
(game 146), so does the number of Fortress Kills. At game 149, the number of 
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Figure 10.3 A plot of one player’s data based on two features—number of Fortress 
Kills (FortKills) and number of Mine Kills (MineKills)—and one score (TOTAL). See 
text for detailed discussion (Gray and Destefano 2016).
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Fortress Kills peaks whereas the number of Mine Kills plummets and the total 
score returns to its average. This is a true invention. Although we programmed 
this version of Space Fortress, we were not aware that what this player in-
vented in this sequence of games was even possible. Indeed, while several of 
our players discovered the strategy used in the leftmost gray band (see Figure 
10.3), very few discovered this one.

In summary, applying changepoint analysis to these data supports our inter-
pretation of dips and leaps as sometimes signaling periods of discovery, inven-
tion, and change. There is no way for knowledge compilation or other known 
practice-based cognitive processes to account for these discoveries.

 Applying Machine Learning Insights to Tetris

A related line  of research compares similarities and differences between per-
formance by humans and  machine learning models (Sibert et al. 2017). The 
most recent work in this thread compares the machine learner “tortoise” with 
the human “hare” (Sibert and Gray 2017).

 Reinforcement Learning Modeling for Minds and Machines

To handle the pattern-matching component of placing a new Tetris piece (or 
zoid) in the pile of existing pieces, we turned to the feature learning method 
of  cross-entropy  reinforcement  learning (see Sibert et al. 2017). Janssen and 
Gray (2012) discuss three parameters of reinforcement learning which could 
be modifi ed to better match human learning and practice: when, what, and 
how much to reward. The “what” component was interesting to us because 
all Tetris machine modeling research we could fi nd reinforced the “number 
of lines cleared.” These models played a lot of episodes (often over 300,000) 
and cleared a lot of lines (often over 100,000). At that time the best player we 
had in our lab played for 506 episodes (one zoid per episode) and cleared close 
to 200 lines. We wondered if playing for lines versus playing for score would 
produce different weights in our feature sets and affect performance. Both of 
these thi ngs happened. As Sibert et al. (2017) show, the different feature rates 
were learned for the two objective function conditions and, when judged by to-
tal score per game, the lines model rapidly plateaued at around 100,000 points 
whereas the score model peaks around 200,000 (see Figure 10.4).

Figure 10.4 shows that the lines controller (which is the one always used 
by the machine learning community) produces a fl at function across its many 
generations, whereas the score controller shows plateaus, dips, and leaps. At 
fi rst this fi nding seems like an interesting mystery. On further thought, it seems 
completely understandable and provides a bit of an “ah-ha” moment.
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The lines model is playing to clear the maximum number of lines it can and 
it does this extremely well. With 506 zoids, the maximum possible is 202 lines 
cleared. Most of these clears are 1-line clears—not 2-, 3-, or 4-lines. Hence, 
when the y-axis plots score (as we do in Figure 10.4), this model’s score is 
about as high as it can be by clearing one line at a time.

In contrast, the score model is clearing more 2-, 3-, and 4-lines. As the score 
function rewards multiple line clears (e.g., clearing 4-lines at once yields 7.5 
times as many points as clearing 1-line, four times), the score model learns 
to maximize points by maximizing the number of simultaneous lines cleared. 
However, the zagging line for score in Figure 10.4 shows that this is a risky 
maneuver. Doing multiple line clears requires allowing the average board 
height to become higher than for 1-line clears. This is a dangerous trade-off 
because when the board becomes too high and the stack of zoids reaches the 
top of the screen, the game ends.

 A Necessary Digression: Tetris Technicalities

There are several key differences between machine and human play of Tetris. 
As the level increases, the time it takes a zoid to drop 20 lines keeps decreas-
ing. At level zero, an unhampered zoid would fall 20 lines in 16 sec (to the 
bottom of the board). At level nine it drops the same distance in 2 sec. By level 
16, the drop takes 1 sec. At level 19, the fall takes 0.66 sec. For human play, 
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Figure 10.4 Learning curve of models. In each game and generation, the total num-
ber of zoids available is 506. At the end of each generation, before the next set of 100 
controllers is generated, the new starting controller played 30 test games (for details, 
see Sibert et al. 2017). The mean performance for these 30 games, for each of the 80 
generations of training trials, is plotted here. Adapted from Sibert et al. (2017, fi g. 3).
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the drop rate tops out at 0.33 sec to fall those same 20 lines at level 29. Clearly, 
such rates of fall present a signifi cant challenge to human perception, action, 
and  decision making. To  motivate humans to play faster and faster (and some 
of the champions at the annual Classic Tetris World Championships do play 
beyond level 29), the number of points awarded for clearing lines “escalates” 
as a function of drop rate.

In contrast to humans, the machine models (MM) evaluate the goodness of 
all possible placements in a blink of the eye and “move” the piece to that loca-
tion instantly. There is no difference for them between play at level zero, level 
30, or level 12,000. If we began rewarding the model at level zero rates (the 
“base” score) and escalated the scoring system beyond level 30 (the highest 
level reached by humans) all the way to level 12,582 (the highest level reached 
by our models), the model’s escalated score would be 34,847,635,540 points.

With such escalated scores, it becomes misleading to compare MMs at high 
levels of play to each other and certainly to humans. Hence, we have adopted 
the convention of presenting base scoring and escalated scoring. When we 
are discussing the long games played at levels only achieved by the MMs, we 
always use base scoring, which rewards Tetris play at all levels the same as for 
level zero. However, when we are within human levels of play, we report both 
escalated and base scores.

 The Tortoise and the Hare

The Sibert et al. (2017) study left us in a bit of a quandary, if only because the 
entire corpus of machine learning research on Tetris uses lines as their objec-
tive function. In their defense, these machine learning studies focused on de-
veloping methods for feature search, not on model behavior and, as discussed 
above, the models do not play under time pressure. From that perspective, we 
realized that by capping the number of zoids at 506, Sibert et al. (2017) artifi -
cially simulated a type of time pressure.

To investigate this issue more thoroughly, we abandoned  cross-entropy 
 reinforcement  learning and took up  Mind Modeling or, to be more precise, 
MindModeling.org (Glendenning et al. 2016; Gluck and Harris 2008). In this 
work, Sibert and Gray (2017) turned to a grid search of the feature space to 
test 3,543,122 models that each played one game. The models played in one of 
two conditions: tortoise or hare. In the tortoise condition, each of the 1,771,561 
models played until it lost. In the hare condition, each of the 1,771,561 models 
played for a maximum of 506 zoids.

As shown in Table 10.1, the best tortoise/long model (row 1), which was 
allowed to play to its limits, scored 5,527,820 (base) points. The highest per-
forming model in the best hare/short game condition (row 4) scored 240,900 
(escalated) points, clearing 199 lines using 506 pieces. (The maximum number 
of lines possible to clear with 506 pieces appears to be 202).
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We then allowed the best hare model to play a long game (Table 10.1, row 
2), and the best tortoise model to play a short game of maximum of 506 zoids 
(row 3). The best tortoise model did poorly in the short condition with 92,700 
(escalated) points, far below the 240,000 (escalated) points of the best hare 
model in the short length condition. Similarly, under long length conditions the 
best hare model performed well above average (68,400 base points), but scored 
nowhere close to the best performing tortoise model (5,527,820 base points).

 Model Behavior

The above comparisons are interesting; however, as we are focused on human 
behavior, we are not merely interested in the models’ various scores (i.e., the 
“points” and “lines” columns in Table 10.1) but in their behavior. Did the dif-
ferently trained models show different behaviors from each other and/or in 
their transfer conditions?

For this comparison, we looked at key behaviors known to separate human 
Tetris experts from novices; namely, the proportion of 1-, 2-, 3-, and 4-lines 
cleared. As Table 10.2 shows, the tortoise models had proportionally more 
1-line clears than the hare models, but the hare ones had more 2-, 3-, and 
4-lines than the tortoise ones. More interesting, the tortoise models made al-
most no 3- or 4-line clears (all were less than 1% of the total), whereas the hare 

Table 10.1 Model scores and lines cleared.

 Model Length Points Scoring Lines

Best tortoise Long 5,527,820 Base 125,829
Best hare Long 68,440 Base 2243
Best tortoise Short 92,700

8720
Escalated base 202

Best hare Short 240,900
18,900

Escalated base 199

Table 10.2 Model behavior: differences in the percentage of types of line clears.

 Line Clear Type Best Tortoise Best Hare

1-Line 85.16 70.37
2-Lines 14.03 18.52
3-Lines 0.78 4.44
4-Lines 0.03 6.67
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models ranged from 4.4% to 6.7%. The hare pattern of more 4- than 3-line 
clears shadows the pattern of our best human players. 

Summary and Conclusions

These models are not replicas of human decision making, but they provide in-
sight into how humans make complex, rapid decisions. The Sibert et al. (2017) 
work showed that models trained to optimize the objective function of points 
performed differently than those trained to optimize lines cleared. Not only did 
they fi nd that the points-trained model achieved a higher score in fewer lines 
than the lines model, but it better predicted performance differences between 
expert and novice human players. The lines model essentially did not distin-
guish between human experts and novices. As such, these strong differences in 
optimal strategies are issues which must be considered when humans partner 
with robots, such as is intended to be the case in the canonical uses for  future 
ITL. To make this connection very clear, an implication of this research is 
that the details of the content taught to the ITL agent matter and should likely 
change depending on the circumstances, regardless of whether that agent is 
human or machine. Rather than rewarding performers for number of items 
completed, the reward needs to be framed in terms of number completed per 
unit of time.

We characterized the points-trained models as riskier than the lines-trained 
models because the only way to gain more points with a limited number of 
pieces is to do more 3-and 4-line clears. These require building higher piles 
than do the lines models. This, however, is a riskier strategy, and we interpret 
the dips and leaps in Figure 10.4 as showing that risk.

The MindModeling models support these conjectures. The  MindModeling 
models were not reinforcement learning models; hence, there was no objec-
tive function. Using “total points” as our sole criterion, we simply selected the 
model that scored the most points in 506 episodes and the one that scored the 
most points when given unlimited play. Although the best hare model upped its 
score 12-fold when allowed to play long, it was nowhere near the level of the 
best tortoise model. Even more surprising, the best tortoise model, the one that 
scored more than 5 billion points, delivered a pathetic showing when it went 
short, a mere 92,700 (escalated) points!

It is worth noting that the tortoise-trained model completely brackets the 
hare-trained one. The tortoise/long scores 80 times as many (base) points 
as the hare/long, while the tortoise/short scores only 38% of the (escalated) 
points as does the hare/short (46% of the base points). These comparisons 
drive home the oft-missed point that “time” itself is part of Simon’s gelatin 
mold and to a large degree the methods we choose are proportional to our 
time horizons. 
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Finding the “I” in Team

Our fi rst two  paradigms, Tetris and Space Fortress, focus on  individual per-
formance and individual interactions in dynamic task environments. Our third 
paradigm is the  game  League of Legends (LoL), which is the most popular 
game in the wildly popular genre of multiplayer online battle area games 
(MOBAs). (For further information on LoL, see https://goo.gl/d7mcs8.) Our 
research on LoL focuses on fi nding the “I” in team. The term “team” is not rig-
orously defi ned in psychological science; many things in which more than one 
person is involved are often casually referred to as “team tasks” and the group 
of people who are involved in those tasks are considered “teams.” We will not 
provide a taxonomy of teams but will provide examples of the characteristics 
we are studying.

In common with Tetris and Space Fortress, LoL takes place in a dynamic 
task environment. Also like Tetris and  Space Fortress, for LoL, doing nothing 
requires a decision to do nothing. In Tetris the environment acts on the human 
agent via the zoid that appears and the frequency and recency with which each 
of the seven differently shaped zoids occur (Sibert and Gray 2018). As play-
ers demonstrate competence by completing levels, the environment literally 
speeds up so that the time required for a zoid to drop 20 rows began as 16 sec 
at level zero, sped up to 1 sec by level 16, and topped out at 0.33 sec at level 29 
(few players ever get above level 16).

Compared to Tetris, in Space Fortress the environment is more overtly hos-
tile to the player and vice versa. Mines spawn randomly and are attracted to 
the player’s ship which they try to ram, thereby blowing up the player’s ship 
and themselves. The “Space Fortress,” after which the game is named, is less 
suicidal than the mines, as it primarily defends itself from player attacks by 
trying to shoot and destroy the player’s ship.

In contrast to these games, the lure of LoL is that the environment is not 
just dynamic and not just hostile; instead, it is intelligently hostile and cleverly 
dynamic. Although there is more to the LoL environment than just the overtly 
hostile fi ve people on the opposing team, this is the main feature. They are 
trying to kill you. Many, if not most, of the players have a lot of  experience 
playing together as a team (e.g., teams that have played together hundreds of 
times are not uncommon) and with attacking opposing teams with the goal of 
defeating them.

Of course, there are two major ways of describing the differences between 
our fi rst two paradigms and LoL. The fi rst, taken above, is to discuss the dyna-
mism and hostility of the task environment. The second is that LoL is a team 
event; this is the key difference between LoL and the fi rst two games and is, for 
us, the most interesting feature of LoL. It also is the feature that ties this game 
even more closely to ITL, because team members are able to learn interactively 
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from each other during game play. We discuss this feature further after a brief 
introduction to the game. 

What Is League of Legends?

In LoL, one team (comprised of 3 or 5 players) battles another team of equal 
size in matches which last about 30 minutes each. In 2012, one billion hours 
of LoL were played worldwide each month (Kenreck 2012).2 With LoL as our 
paradigm, we have adopted big data (Goldstone and Lupyan 2016; Griffi ths 
2015) approaches to harvest play data from the web. To date we have collected 
1.9 million records from 539 thousand matches. Figure 10.5 shows the “gods’ 
eye view” of LoL. In addition to that view, players see a third-person view of 
their avatar, the avatars of nearby players, and close-up views of the surround-
ing terrain.

LoL contains elements that are attractive for empirical studies of team 
performance:

• It is a team-based game with high demands for coordinated action 
across team members.

• It is highly instrumented, with detailed records kept on many aspects 
of performance.

• Its view of performance is multifaceted, with many explicit measures 
both at process and outcome levels.

• It enables various measures of team composition to be extracted or 
derived from match records, such as the working history of team 
members.

 The Role Structure of LoL Teams

Without providing a tutorial of LoL play, we stress that like other invasion 
games,3 a player’s role in LoL is largely determined by the position played 
(Williams et al. 2011). For our purposes, position refers to the combination of 
the lane a player occupied and the role they fulfi lled. LoL players may occupy 
the (a) top, (b) middle, or (c) bottom lane or (d) the jungle (i.e., the territories 
in between the lanes) (see Figure 10.5). There are fi ve roles a player can fi ll: 
none, duo, duo support, duo carry, and solo. Different roles are available for 
the different lanes, resulting in sixteen different positions that a LoL player 
could play.

2 For readers who are unfamiliar with LoL, we advise viewing the fi ve-minute overview on 
YouTube before proceeding: https://goo.gl/d7mcs8 (accessed Feb. 10, 2019).

3 See “Teaching Games for Understanding” at http://tgfu.wikifoundry.com/page/Helena+Baert 
and “What Are Invasion Games” at https://thephysicaleducator.com/game_category/invasion/ 
(accessed Jan. 31, 2019).
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 Research Issues in Team Performance of Dynamic, Interactive Teams

“Team” is a loose concept that can be applied to many groupings of individu-
als. For instance, a shift of telephone directory assistant operators could be 
called a “team,” where the judgment of “team goodness” per shift is simply the 
sum of the number of calls handled during that shift. However, we would not 
consider this team to be either “dynamic” or “interactive.” For our purposes, 
examples of dynamic, interactive teams include (but are not  limited to) (a) 
emergency response teams, (b) combat teams, and (c) sports teams for inva-
sion games. That is, the essence of interaction for our defi nition of a dynamic, 
interactive team includes interactions among team members which directly 
contribute to team outcomes.

 In talking about team performance, whether the team is composed of hu-
mans, robots, or humans and robots (any combination of agent types in the 
broader ITL framework), we can easily talk about performance at two levels:

Figure 10.5 Screenshot of a battlefi eld map for the multiplayer online battle arena 
game, League of Legends. The river fl owing from the upper left to the lower right sepa-
rates the “home” territory of one team from the other. Territories can only be crossed 
via one of the three lanes (top, middle, and bottom marked here by blue and red arrows). 
Each team begins in one of the large quarter circles shown in the lower left (blue team) 
or upper right (red team). These bases include the all-important “nexus” (the blue or red 
area closest to the lower left and upper right corners). The darker green spaces between 
the lines are less traversable terrain referred to as the “jungle.”
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• The team: Was it successful? Did it accomplish its mission?
• The individual team member: How well did she, he, or it do? How does 

the member’s performance compare to that of members in other teams 
or in its own team?

For dynamic teams (including both traditional sports teams and e-sport teams), 
team outcome can be very simply defi ned by whether the team won or lost. 
However, three types of team issues must be considered:

• Individual (Figure 10.6a): Does the team outcome refl ect the simple 
sum of each player’s individual competence in carrying out her/his role 
independent of the other players?

• Teaminess (Figure 10.6b): Is each member of the team doing essen-
tially the same task but to varying degrees? In this model, there are no 
differences in type of expertise among team members, though there 
might be differences in degree of expertise.

• Teaminess + Individual (Figure 10.6c): Is there a component of shared 
expertise but also a component of individual expertise?

An important conundrum for these types of teams is that sometimes a team 
member’s role does not seem to be directly connected to team outcomes. For 
example, in basketball it often seems as if one or two of the fi ve players are mak-
ing all of the shots and scoring all of the points. What are the other three doing? 
And how can we measure how well they are doing it?

 Individual Contributions to Team Tasks

The success of our work on Space Fortress and Tetris has driven home to us 
how important data on player skill at shifting and focusing  visual attention is 
to understanding differences in expertise among players. Indeed, the more we 
study and learn from individual experts, the more we believe that an impor-
tant component of “team member” expertise and/or of “expert teams” is how 
individual team members divide and overlap their visual attention. Perhaps 
somewhat counterintuitively, it may be an individual’s expertise at attending to 
other team members that creates an expert team.

Our strongest conclusion, so far, is a methodological one; stated metaphori-
cally, if you want to understand how a clock works, you have to understand 
the clockwork. You have to understand what each part is doing, what parts 
it interacts with, and the nature of those interactions. We believe we will not 
understand the “I” in team until we understand the expertise of individual team 
members. Interestingly, the second edition of the Cambridge Handbook of 
Expertise and Expert Performance (Ericsson et al. 2018) contains 42 chap-
ters and 969 pages, but only one chapter devoted to team expertise. Although 
that chapter is written by expert team researchers, we have diffi culties relat-
ing their discussion to the measures and factors that we have found in our 
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(a) Mash up
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Figure 10.6 Three possible models of team and individual performance in dynamic, 
interactive team tasks. (a) Mash up: six independent models where each role/position 
model includes a teaminess and an individual component but to unknown degrees. (b) 
Teaminess model: one model for the entire team. Each individual is viewed as having 
more or less of that one model. (c) Teaminess + individual: all data is used to fi nd the 
best fi t for each player position. This model captures both the teaminess component and 
the individual component. 
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teams. Perhaps the way forward for understanding team expertise in dynamic, 
interactive task environments is to follow the “joint action” community (e.g., 
Knoblich et al. 2011; Sebanz and Knoblich 2009) and focus on the second-by-
second interactions among dyads, triads, and tetrads. In this effort, having one 
or more ITL team members, whose behavior could be programmed as well 
as learned, might make ITL (as represented by many of the other chapters in 
this volume) a core topic in team research and, at the same time, make team 
research the overarching perspective on ITL.

 Paradigms for Discovering the Essence 
of Interaction: Action Games

Our discussion of the essence of interaction started with the  plateaus, dips, 
and leaps framework, which focuses on individual performance over time. The 
discovery of inventions made by one player after about 9 and almost 20 hr of 
play highlights the point that the slow-but-steady mechanisms of incremental 
learning simply cannot account for the dips and leaps seen in skill acquisition.

We then jumped to our machine learning data and used these models to 
explore the “optimal possible performance” once a certain objective function 
was adopted. We used the  MindModeling system to access large-scale compu-
tational resources and perform a grid search across a parameter space covered 
by 1,771,561 models. That work dramatically demonstrates that “slow and 
steady” wins the race, but only when the race is long. When it is short, as it is 
for humans, the best hare model wallops the best tortoise model.

Jumping back to humans, one conclusion from our current work on “fi nd-
ing the ‘I’ in team” is that solving the “team problem” requires solving the 
problem of individual expertise. In addition, a methodological revolution is 
needed in both team studies and studies of ITL, and that revolution might be 
fueled by the methodological techniques and insights of the joint action com-
munity. Finally, if we are talking about intelligent, autonomous, robots and 
software agents, then there may be few inherent differences in the ways we 
study human-only teams versus mixed human–machine teams.

 Paths Forward?

The central question addressed at this Forum concerned the acquisition of new 
tasks through natural interaction. Here, we have provided examples of human 
behavior in task environments that are interactive, dynamic, and require se-
quential  decision making. For such task environments, action games provide 
a right-sized challenge, and we have provided our answer as to the sorts of 
methodologies and studies that should be done.

A perennial problem in the psychological sciences is collecting the mas-
sive amounts of detailed data required to draw strong inferences regarding the 
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research question of interest. Indeed, a conclusion that we and others draw 
from the current “crisis” in data analysis (Baker 2016) is that most studies have 
too few subjects and too few samples of data. If, as a fi eld, we are truly inter-
ested in studying human interactive behavior, we must collect detailed data 
from many subjects. If we are interested in how interactive skill is acquired 
over time, then we need to run longitudinal studies, sampling expertise from a 
very large number of performers across a wide range of skilled performance, 
or both.

This problem with longitudinal or sampling studies of expertise represents 
the standoff which the human factors community has been battling for decades. 
We advocate confronting this standoff by taking advantage of the availability 
of vast numbers of people on college campuses who have acquired almost 
obscene levels of excellence in action games. Of course, what makes these 
campus activities so useful is the electronic nature of the tasks and the realistic 
prospect for researchers to collect detailed data with millisecond precision. 
Indeed, our current conclusion is that the study of ITL needs to follow the 
“joint action” (e.g., Knoblich et al. 2011; Sebanz and Knoblich 2009) path of 
detailed empirical studies (e.g., Vesper et al. 2009) rather than the traditional 
“team studies” path of eschewing the direct observation of millisecond level 
interactions among team members.
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