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Abstract

This chapter proposes a new framework for  diagnostic nosology based on Bayesian 
principles. This novel integrative framework builds upon and improves the current di-
agnostic system in psychiatry. Instead of starting from the assumption that a diagnosis 
describes a specifi c unitary dysfunction that causes a set of symptoms, it is assumed 
that the underlying disease causes the clinician to make a diagnosis. Thus, unlike the 
current diagnostic system, this framework treats both symptoms and diagnostic classifi -
cation as consequences of the underlying pathophysiology. Comorbidities are therefore 
easily incorporated into the framework and inform, rather than hinder, the diagnostic 
process. Further, the proposed framework provides a bridge—which did not previously 
exist—that links putative constructs related to pathophysiology (e.g., RDoC domains) 
and clinical diagnoses (e.g., DSM categories) related to signs and symptoms. The mod-
el is fl exible; it is expandable and collapsible, and can integrate a diverse array of data 
at multiple levels. Crucially, this novel framework explicitly provides an iterative ap-
proach, updating and selecting the best model, based on the highest-quality available 
evidence at any point. In fact, the scheme can, in principle, automatically ignore data 
that is not relevant or informative to the diagnostic trajectory. Finally, the proposed 
framework can account for and incorporate the longitudinal course of an illness. This 
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chapter details the theoretical basis for this framework and provides clinical examples 
to illustrate its utility and application. Multiple iterations of this framework will be 
required based on available information. It is hoped that, with time, the framework will 
enhance our understanding of individual differences in brain function and behavior and 
ultimately improve treatment outcomes in psychiatry. 

Introduction

 Nosology is defi ned as the branch of medicine that addresses the classifi cation 
of disease (see First, this volume). In psychiatry, such classifi cations capture 
the ways in which patients present to clinicians and are meant to assist mental 
health professionals in providing optimal clinical care. The current fundamen-
tal approach to nosology in psychiatry is to classify disorders as categorical 
syndromic clusters of signs, symptoms, and potentially laboratory fi ndings, as 
outlined in the  Diagnostic and Statistical Manual of Mental Disorders (DSM). 
Clearly, this approach has had a major positive impact on clinical practice and 
has led to substantial improvements in research and improved understanding of 
some neural mechanisms underlying dysfunction. Nevertheless, the clinician’s 
reliance on the DSM categorical descriptive approach to diagnosis has had 
signifi cant limitations in terms of assisting clinicians in treatment selection and 
prediction of  prognosis. Although it was clearly hoped that the DSM system 
would refl ect the etiology or the pathophysiological processes that underlie the 
disorders, it has become equally clear that this is not the case (Hyman 2010). 
Although relatively little was known in this regard when  DSM-III emerged 
more than thirty years ago (APA 1980), there is little to no mention of neu-
robiological processes, even in the more recent version,  DSM-5 (APA 2013), 
despite great advances in psychiatric neuroscience. As a result, consensus has 
emerged regarding the need to go beyond the categoric al descriptive approach 
of DSM, with the hope of improving  outcome prediction and  treatment re-
sponse for individual patients. 

The  Research Domain Criteria (RDoC), sponsored by the U.S. National 
Institute of Mental Health (NIMH), were established to provide “a framework 
for creating research classifi cations that refl ect functional dimensions stemming 
from translational research on genes, circuits, and behavior” (Insel and Cuthbert 
2009:989). The goal of RDoC was to shift researchers toward a focus on dys-
regulated neurobiological systems, as the organizing principle for delineating 
dysfunction. For example, constructs in RDoC, such as “ cognitive control,” 
emerge from neuroscience research that links functions in neural circuits to 
measures of  information processing obtained in the laboratory (e.g., Morris and 
Cuthbert 2012). Although RDoC has not, to date, led to great improvements in 
diagnostic nosology, the foundation it provides for linking nosology and neuro-
science is critical for advancing the fi eld in both research and clinical domains.
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Clearly, both dimensional and categorical approaches such as  RDoC and 
DSM offer complementary advantages, and both approaches to nosology are 
likely to be invaluable for many years to come. The problem, however, is that 
there is currently no link between the neurobiological systems that form the 
basis of the fundamental RDoC domains and the symptoms that form the basis 
for the syndromes that comprise the DSM. As a result, neuroscience remains 
far removed from clinical decision making. Although there are advantageous 
features of the DSM and RDoC which, if combined, could potentially improve 
and advance clinical treatment and research related to mental illness, there is 
currently no means to bridge these two systems. That is, there is no frame-
work that will allow clinicians or researchers to link domains of psychological 
or neurobiological function to existing DSM diagnostic categories. Further, 
there is no mechanism in place to relate RDoC domains or DSM constructs to 
measures of clinical utility (e.g., prognosis, effective treatment, cost). Current 
approaches to categorization are also defi cient in their ability to account for 
 comorbid diagnoses and the longitudinal evolution or trajectory of disorders. 
Here, we introduce an integrative framework, based on Bayesian principles, 
that builds upon the current systems. It integrates the process of  clinical deci-
sion making and the process by which individual differences in brain function 
give rise to individual differences in behavior. The ultimate goal of this frame-
work is to improve diagnoses and treatment outcomes in psychiatry.

Utilizing an Integrative Framework to 
Improve the Diagnostic Process 

Computational (or theoretical) neuroscience likely has much to offer in terms 
of developing a  mechanistically informed nosological structure; however, it 
may also have a useful role in providing a formal probabilistic structure to 
the ensuing diagnostic process in and of itself. In short, our approach treats 
symptoms, signs, and clinical decisions about a patient as observable conse-
quences of  latent constructs (such as defi cits in “cognitive control”), which 
emerge from hidden physiological states (see Figure 10.1). Such a framework 
can be used progressively to reduce uncertainty about clinical decision making 
by guiding the clinician to the most informative questions to ask or diagnostic 
tests to perform. Further, inherent in this framework is the ability to compare 
models of pathophysiological and psychopathological dynamics, and their 
causes and consequences, to quantify the relative confi dence in differential 
diagnoses. This, in principle, could include the clinicians’ more intuitive (ex-
pert) inferences, which could be recorded as diagnostic scores (see Friston, this 
volume), much like scores from clinical questionnaires. Prior to presenting the 
technical components that constitute this framework, we fi rst introduce some 
key concepts and terminology. 
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limitations of that process. Similarly, every normative model has implications 
for the potential processes that can produce that optimal solution. For example, 
many normative decision models do not take into account the time it takes 
to compute a predicted expected outcome, nor do they take into account the 
limited perceptual abilities humans have. However, once one has specifi ed the 
processes for computing expected outcomes or the limitations of one’s percep-
tion, one can ask about the  normative model, given those limitations. 

More technically, normative models rest on the assumption that the behav-
ior at hand can be cast as an optimization process, where the states or param-
eters of the normative model optimize a well-defi ned function. In contrast, a 
 process model specifi es the algorithmic and implementational details of how 
the objective is attained. Process models can be formulated in terms of pu-
tative neuronal processes. Indeed, the utility of process models is that they 
can be used as observations or statistical models of observed responses such 
that, when fi tted to data, their parameters associate biological processes with a 
functional role (Boly et al. 2011). Thus, process models have the useful prop-
erty of characterizing neurophysiological responses in terms of well-defi ned 
computations.

The standard process model implicit in most nosologies assumes that a par-
ticular entity exists, as indicated by a diagnostic term, which causes symp-
toms. For example, “schizophrenia” is viewed as an external reality in a pa-
tient, which causes  hallucinations and other manifestations of the illness. Here, 
we adopt a different view of  diagnosis, considering it an observation based on 
the judgment of the clinician. From this perspective, continuously distributed 
 latent variables cause a diagnosis. As described below, a latent variable is an 
unobservable state or parameter that is inferred or hypothesized based on the 
observable states or parameters. For example, a neuronal failure of percep-
tual inference causes hallucinations,  delusions, and a concomitant diagnosis 
of schizophrenia. When a clinician arrives at a diagnosis, this represents one 
important piece of observational data that can be placed in the context of other 
observations. Thus, the diagnosis does not cause symptoms, but rather refl ects 
the impact of multiple underlying processes. Using  Bayesian inference, proba-
bilistic statements can be made about the nature of these underlying processes. 
Moreover, as information accumulates, these statements can be progressively 
updated in a process that, over time, may improve clinical prognosis. This 
Bayesian process model is based on the notion that a diagnosis does not cause 
a disease process—the disease process causes the diagnosis—and its accompa-
nying symptoms and signs (Figure 10.1).

Use of a Bayesian Model to Improve Diagnostic Nosology

Bayesian inference allows reasoning about uncertain quantities (i.e., latent 
variables) according to the rules of  probability theory. In other words, Bayesian 
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inference is the extension of deductive logic (i.e., reasoning about quantities 
which are certain) to  inductive reasoning (reasoning about quantities which 
are probabilistic). One can show (Cox 1946) that any violation of the rules 
of probability (or, equivalently, of inductive reasoning or Bayesian inference, 
which are different names for the same thing) entails a violation of common 
sense. We can therefore use Bayesian models to relate the cause-effect infer-
ences above. 

Latent Variables/Latent Constructs

Latent or hidden variables are states or parameters that are not directly ob-
served, but can be inferred by inverting a model of how observations depend 
on them. To give a simple example, consider the interpretation of a diagnostic 
test of HIV—a single observation in this system.  We interpret the relationship 
between the presence of HIV infection (A) and the results of the test (B) based 
on  Bayes’s theorem:

p A B
p B A p A

p B A p A p B A p A
|

|
| |

,( ) =
( )⋅ ( )

( )⋅ ( )+ ¬( )⋅ ¬( )
(10.1) 

where A and B refer to statements that can be true or false, and ¬A is the nega-
tion of A. Applied to clinical data, A could be, “The patient is HIV positive,” 
and B could be “The patient’s HIV test is positive.” p(A) denotes the prob-
ability that statement A is true, and p(A | B) denotes the probability that A is 
true given that B is true. Assuming that the infection rate for the demographic 
profi le of the patient is 1% (i.e., p(A) = 0.01 and p(¬A) = 0.99), that the true 
positive rate of the test is 95% (i.e., p(B | A) = 0.95), and that the false positive 
rate is 2% (i.e., p(B | ¬A) = 0.02), Bayes’s theorem tells us that, given an initial 
positive test, the probability that the patient is HIV positive is 32%:

0 95 0 01
0 95 0 01 0 02 0 99

0 32.. .
. . . .

.⋅
⋅ + ⋅

= (10.2) 

The usefulness of Bayes’s theorem derives from the fact that it allows us to 
quantify the effect on the probability that A is true, after establishing that B is 
true. Moreover, as observations accrue, we also are able to incorporate each 
emerging observation into this accrual process. Before taking any initial obser-
vation on B into account, based on the infection rate in the relevant population, 
p(A) is 0.01 and p(¬A) is 0.99. This is called the  prior probability distribution, 
often referred to simply as the prior, because it is the prior belief before taking 
any additional observations into account. After observing B, Bayes’s theorem 
then gives us p(A | B) = 0.32 and p(¬A | B) = 0.68, which is the  posterior prob-
ability distribution, or simply posterior, because it is the (updated) distribution 
after taking the observation into account.
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The latent variable here is the presence of HIV infection in the blood of the 
patient (A or ¬A). It cannot be observed directly; rather, it has to be inferred 
by inverting (i.e., applying Bayes’s theorem to) a probabilistic model of how 
HIV status leads to test outcomes. Evidence regarding the latent variable can 
be accumulated by repeated observation. Since a probability of 32% for posi-
tive HIV status is a poor basis for a treatment decision, we can choose to apply 
the test again. Assuming the test comes back positive again, we now have a 
probability of 96%:

0 95 0 32
0 95 0 32 0 02 0 68

0 96.. .
. . . .

.⋅
⋅ + ⋅

= (10.3) 

In this calculation, we simply had to replace 0.01, our original estimate based 
only on demographics, with 0.32, our estimate that followed from our initial 
observation of B. Moreover, in this calculation, we replace 0.99 with 0.68, 
similarly refl ecting the infl uence of the fi rst test. The probability of the patient 
being HIV positive had risen from 0.01 to 0.32, and conversely, the probabil-
ity of his or her being HIV negative shrank from 0.99 to 0.68. In Bayesian 
terms, the posterior after the fi rst observation is the new prior before the sec-
ond observation. 

Information about latent variables cannot only be accumulated by repeated 
observations of the same kind, but also by integrating information from differ-
ent sources. If we assume that after the fi rst test was positive, a second, perhaps 
more expensive, test with true positive rate 99% and false negative rate 0.5% 
was used and came back positive, then the probability of HIV positive status 
after the second test would have been 99%:

0 99 0 32
0 99 0 32 0 005 0 68

0 99.. .
. . . .

.⋅
⋅ + ⋅

= (10.4) 

These examples illustrate that if we have models of how latent variables lead 
to observations, we can use  Bayesian belief updating to infer the status of 
latent variables and base  treatment decisions and prognoses on those infer-
ences. Indeed, in the proposed integrative framework, we are using Bayesian 
principles to do just this for psychiatry. 

Bayesian Model Comparison

Bayesian inference can  also be used to score the goodness of formal  generative 
models. For example, one model might describe the evolution of a particular 
psychopathology as cyclical, leading to a prediction of periodically fl uctuat-
ing clinical observations, whereas another might describe the evolution of the 
same psychopathology as linear, leading to a prediction of linearly progressing 
clinical observations. Given actual observations, the goodness of each model 
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can be scored in terms of its expected predictive power, which has two as-
pects: the ability to explain existing data and the ability to generalize to new 
data. These two requirements are jointly quantifi ed by one number: the model 
evidence. When applied to a given dataset, each competing model has a cer-
tain amount of evidence for it. Formally, the model evidence is calculated by 
marginalizing (i.e., taking a probability-weighted sum of) the model likelihood 
over all possible latent variable values:

Mode evidence Observations Model

Observations

= ( )
= ∫

p

p Variables Variables dVariables,( ) ( )p
(10.5) 

where dVariables denotes integration (i.e., summation) over the whole variable 
space, p(Observations | Variables) is the likelihood, and p(Variables) weights 
the likelihood by the prior probability of the variables taking a particular value. 
While the resulting number is not interpretable in isolation, the ratio of two 
model evidences is the Bayes’s factor which indicates the relative quality of 
two models. This is because the Bayes’s factor is what relates the prior odds 
(i.e., the ratio of the probability of one model to the probability of the other 
before making any observations) to the posterior odds (i.e., the same ratio after 
making observations):

Posterior odds = Bayes’s factor ⋅ prior odds, (10.6) 

or more formally: 

( )
( )

( )
( )

( )
( )p

p
pModel | Observations1

Model | Observations2
=

lObservations Mode 1
Observations Model 2

Model1
⋅

p
p
p

.
Mode 2

(10.7) 

A Bayes’s factor greater than 1 indicates more evidence for Model 1 than for 
Model 2, while a Bayes’s factor of less than 1 indicates more evidence for 
Model 2 than for Model 1.

It is important to note that Bayesian model comparison does not decide 
which model is correct; it quantifi es the evidence supporting each of the candi-
date models. In doing this, it automatically accounts for both the accuracy and 
complexity afforded by each model. One can show (Penny et al. 2004) that:

Mode evidence Accuracy Complexity= − , (10.8) 

where accuracy and complexity both have formal defi nitions. Introducing addi-
tional latent variables increases the complexity of a model, but these additions 
might yet improve model evidence if the complexity increase is outweighed 
by an increase in accuracy. In general, there will be a peak in model evidence 
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for a certain number of latent variables, after which adding more complexity 
is no longer warranted.1

Bayesian Integrative Framework

Although  we can only observe (e.g., symptoms, measurements), we assume 
that these observations arise from an underlying (unobservable) reality. This 
underlying reality includes many diverse factors (e.g., the social milieu, the 
brain state of the subject,  epigenetics) that are too complex to measure directly. 
We defi ne each of these variables to be a dimension within a space. A given 
subject occupies some point in this very high-dimensional space.2 Since these 
variables are assumed to be unobservable, we assume that there are a set of 
latent variables or constructs that capture the most important aspects of this 
underlying reality. A given subject at a given moment in time occupies some 
position within this space of latent variables that is defi ned by dimensional 
constructs. Over time, the subject traces a trajectory through that multidimen-
sional space. Because we do not actually observe the latent variables directly, 
we use Bayesian analysis methods (see below) to derive a probability distribu-
tion over a position at a given time, and over the trajectories a subject is taking 
through that space. An example of trajectories through this dimensional space 
is given by Friston (this volume), who provides a simulation of how such a 
framework could work.

These latent variables refl ect dimensional constructs that arise from our 
understanding of neuroscience, psychology, and other sciences. For example, 
one might wish to quantify the attention abilities of a subject, how the subject 
arbitrates between deliberation and  habit-based  decision making, whether the 
subject’s behavior refl ects problems with  emotions or  impulse control, how re-
active a subject’s  amygdala is to emotional stimuli, etc. These latent variables 
are, by defi nition, dimensional, incomplete, and mutable with new discoveries. 
Furthermore, in this framework, some subjects at particular locations within 
this state-space of latent variables manifest clinical observations that would 
lead a clinician to place the subjects into one or more diagnostic categories at 
any time. Indeed, generating a categorical diagnosis from latent variables that 
correspond to the dimensions allows us to model  comorbidity in terms of un-
derlying pathophysiological or psychopathological dimensions, and to assign 
a unique mapping to diagnostic categories. Because diagnostic categories re-
fl ect (potentially overlapping) areas of state-space, a single point in state-space 
may correspond to several diagnostic categories. Of course, the actual location 
of the subject in state-space is unknown, but a probabilistic distribution over 

1 Popular model scoring measures such as the Akaike information criterion or the Bayesian 
information criterion are approximations to the model evidence which use the exact accuracy 
term but approximate the complexity term because this term is harder to compute.

2 The state-space is the set of all possible values the latent variables can take; given the large 
number of potential variables, the state-space is described here as “high dimensional.”
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points in state-space can be inferred from the symptoms shown by the subject. 
Because the multiple diagnostic categories overlap in some, but not other, ar-
eas of state-space,  comorbidity can increase the accuracy of this state-space 
prediction.

Of note, there had been hope that the diagnoses in the DSM and its ilk 
would refl ect specifi c latent variables—that all of the subjects diagnosed with 
a disorder, such as obsessive-compulsive disorder (OCD), would have a simi-
lar underlying neuropsychological dysfunction. However, decades of research 
have established this hypothesis to be incorrect. Importantly, and perhaps un-
fortunately, a  diagnosis made using taxonomies such as the  DSM is a single 
measurement, while the reality is much more complex. For example, the rela-
tionship between a diagnosis and neuropsychological dysfunction shows both 
 equifi nality (a particular symptom can arise from multiple dysfunctions) and 
 multifi nality (a particular dysfunction can generate multiple symptoms; see be-
low for further discussion). The Bayesian Integrative Framework we propose 
captures this complexity by separating the diagnoses from the underlying la-
tent variables/constructs. For this reason, we treat the diagnosis as an observa-
tion refl ecting underlying latent variables, with a diagnosis being a clinician’s 
measurement of the patient within a scheme such as DSM or the  International 
Classifi cation of Diseases (ICD). 

The levels of this framework are connected by probabilistic (Bayesian) rea-
soning (Figure 10.2). We can measure the probability of a symptom Si aris-
ing from each latent variable (or combination of latent variables) LVj as P(Si 
| LVj) or P(Si | LVj, LVk, ….). Using  Bayes’s rule (see above and Mathys, this 
volume), we can invert these probabilities to infer the probability of a latent 
variable having a specifi c value, given the observations P(LVj | S1, S2, … Sn). 
What this means is that we can use observations to predict which values we 
expect the latent variables to take. For example, a diagnosis of  OCD may only 
be partially predictive of a dysfunction in the balance between goal-directed 
and  habit-based  decision-making systems (Gillan et al. 2011). Thus, if a clini-
cian diagnoses a patient as having OCD, we can use this framework to infer the 
probability of having a dysfunction in the balance between goal-directed and 
habit-based decision-making systems.

To be thorough, we should describe the probability of each observation S as 
arising from a trajectory through the space of latent variables P(Si | path of LVj, 
path of LVk, ….), and again, we can invert this probabilistic model to describe 
the likelihood of following a path through the space of latent variables from 
the observations P(path of LVj | S1, S2, ….). Thus, for example, many patients 
presenting to a clinician with a diagnosis of  major depressive disorder will 
have suffered from a series of relapsing depressed episodes. The number and 
spacing of these episodes may be more informative for the likelihood of  treat-
ment successes than the particular constellation of symptoms that any given 
patient expresses when seen by the clinician (e.g., Tundo et al. 2015). The 
relapsing and remitting nature of these episodes forms a trajectory through an 

From “Computational Psychiatry: New Perspectives on Mental Illness,”  
A. David Redish and Joshua A. Gordon, eds. 2016. Strüngmann Forum Reports, vol. 20, 

series ed. J. Lupp. Cambridge, MA: MIT Press. ISBN 978-0-262-03542-2.





180 S. B. Flagel et al. 

trajectory or will follow a specifi c trajectory through that latent vari-
able space, but rather that there is a probability that any trajectory is 
the real one. 

2. There are multiple levels of understanding and data included. The rec-
ognition that the diagnosis of the clinician is actually a measurement, 
not a latent variable in itself, is important because it allows the incorpo-
ration of information from neuroscience that derives from dimensional 
conceptual frameworks such as  RDoC. Importantly, there is no limit to 
the set of conceptual frameworks that can be so incorporated.

3. This framework allows one to move both up (from observations to con-
structs) and down (from constructs to observations).

Because the framework is fundamentally dynamic, it includes mechanisms to 
incorporate new variables and to remove variables that are not informative. 
Thus, when developing the framework, the following points are important:

1. We do not need to rebuild this framework from scratch. Because the 
framework is modifi able, we can use the current DSM categories and 
insights available from the RDoC project (or elsewhere) as starting 
points and modify them as needed. In the Bayesian terminology, these 
are our priors.

2. This framework can incorporate new measurements, whether they are 
new tasks, new symptomologies, or new diagnostic schemata. It can be 
updated based on new evidence to enhance its explanatory value. 

3. This framework allows one to use Bayesian model comparisons to 
make decisions about which models and latent variables to include.

In this framework, the patient is described as taking a trajectory through the 
multidimensional space of latent variables. What those latent variables are will 
change as new fi ndings from basic science emerge. It might be useful to think 
of this as a blurry set of possible trajectories: some of them may be very sharp 
and clear, whereas others less so. 

In this framework, one could take a diagnosis made by a clinician at a given 
time, use that to predict a probability distribution across  latent constructs, and 
then use that probability distribution across latent constructs to predict future 
outcomes, including symptoms, task-related observations, and diagnoses. In 
general, the strength of this proposal is that it allows a set of observations 
(e.g., task performance, measurements) to be used to predict a distribution 
across constructs which can then be used to predict a future diagnosis. In this 
scheme,  prediction arises from the future trajectory. The trajectory describes 
how subjects typically pass through the paths in the space of latent variables. 
This feature will allow a diagnostician to better infer future outcomes on a case 
by case basis.  Treatment, in this case, is about bending the curve; it is about 
changing the probabilities along the future trajectories, which changes the 
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latent variables, which changes the observations. An example of how treatment 
can bend trajectories can be found in the simulations in Friston (this volume).

Because trajectories are very high-dimensional (i.e., they describe the time 
course of many latent constructs) and complex, we can also view future tra-
jectories as prognoses.  Prognosis is really a set of predicted observations (di-
agnoses or other outcomes) at some future time. Therefore, we could capture 
the concept of prognosis by including both present and predicted future out-
comes in our analyses. Thus, it is not necessary to specify a prognosis explic-
itly within this framework. However, it may be useful to do so. Within this 
framework, a prognosis is an outcome/observation. One could, for example, 
create a new outcome/symptom/observation of interest (e.g., “will relapse/will 
not relapse”), which could then be predicted from the distribution across con-
structs. The decision to treat or not could then be determined by examining 
how the prognosis is conditional on treatment.

Phases of Application

Some of the pragmatic advantages of the  Bayesian Integrative Framework can 
be appreciated in terms of the phases of its application:

Phase I: Construction of the Framework. This step could begin with an expert 
consensus that provides the clinician with the optimized model in a computer-
ized form. As part of this phase, all of the empirical observations (e.g., signs, 
symptoms, treatment history and diagnoses at various time points) would be 
used to build a  generative model that evolves over time and describes a trajec-
tory. Of course, the process of generating such a model is quite important, and 
the details of this process would need to be explicated. However, the process of 
refi ning the  model is more important than the process of generating the initial 
model. As a result, our discussion here devotes space primarily to discussing 
refi nement of the model. Broadly conceptualized, to create this initial model, 
the number of latent variables, causal inputs, and associated functions that best 
describe outcomes in terms of symptom profi les and other measurements, such 
as the clinician’s diagnosis, would be optimized using standard Bayesian in-
version schemes and  Bayesian model selection (see above). Thus, this phase 
uses existing data, or priors, to optimize the model per se. It should also be 
noted, as described below (see Phase Ia), that theories specifi c to a particular 
disorder or cluster of symptoms can be tested with this framework and used to 
further refi ne and enhance the model. 

Phase II: Application. This step is the application for the clinician. After 
having selected the best model, the  posterior relative to the parameters (i.e., 
weights) of that model can be used as priors to estimate the posterior constructs 
and hidden states that provide the best explanation for a patient’s symptom pro-
fi le and associated signs (e.g., neuroimaging, or clinical) and measures. Thus 
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the clinician would use all available data to make such estimates. This might 
only include data from a mental-status examination and history. Alternatively, 
such clinical data could be accompanied by data from neuropsychological tests 
and brain-imaging experiments. Regardless of the content, the process of esti-
mation relies on the same procedures; the  posterior distribution of latent causes 
of the patient’s symptoms can now be used to create a  posterior predictive 
density over differential diagnoses (e.g., DSM) at the current time and, cru-
cially, in the future. Furthermore, one could simulate probabilistic responses 
to therapeutic interventions in terms of (probabilistic) trajectories over future 
(diagnostic or therapeutic) outcomes. Taken together, the knowledge gathered 
in Phase I can be integrated into an application in Phase II for a clinician to 
use to get from observations (symptoms, diagnoses) to predicted trajectories of 
future outcomes (prognoses). The predicted trajectories would be reported as 
probabilities over the multiple possible future outcomes.

Phase III: Refi nement. This step would again emerge from a consensus of 
experts. The  generative model could be refi ned by using all the clinician’s ob-
servations made during the application of the model. The accumulated data 
from application could be assimilated using  Bayesian belief updating (as de-
scribed above) to improve the parameter estimates and model selection. This 
recursive procedure could be iterated indefi nitely, providing an increasingly ef-
fi cient description of “good diagnostic practice” and therapeutic outcomes. In 
addition, one would have the opportunity to include (or eliminate) constructs 
and hidden states using Bayesian model selection. Ultimately, the trajectories 
of hidden states underlying disease progression (or its resolution) may acquire 
increasingly mechanistic details as our understanding of pathophysiology 
accumulates.

Examples of Application of the Bayesian Integrative Framework

To illustrate  how the proposed integrative nosological framework could enable 
the integration of fi ndings from psychiatric research into the clinician’s diag-
nostic act in a well-defi ned and quantifi able manner, we present three specifi c 
examples. Using the phases of the application described above, we explain 
how complex empirical results could inform the clinician’s prognostic predic-
tions and treatment decisions for individual patients presenting with attenuated 
psychotic symptoms,  posttraumatic stress disorder (PTSD), or OCD. 

Attenuated Psychotic Symptoms

 Attenuated psychotic symptoms can, in some cases, herald late onset  schizo-
phrenia. A diagnosis for “attenuated  psychosis syndrome” is now includ-
ed in the DSM-5 (Research Appendix) as a condition warranting further 
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investigation. Epidemiological studies suggest, however, that less than 40% 
of the individuals with attenuated psychotic symptoms will develop full-
blown schizophrenia within fi ve years after diagnosis (Fusar-Poli et al. 2012a, 
2013a). Despite accumulating evidence about risk and protective factors for 
the transition from attenuated psychotic symptoms into schizophrenia (Fusar-
Poli et al. 2013b),  prognostic predictions in clinical practice are still very 
imprecise. 

Phase I: Construction of the Framework

Empirical observations from various time points are used to construct a gener-
ative model of the underlying static and dynamic unobservable causes, states, 
and constructs (Figure 10.3). These empirical observations can be specifi c 
symptoms (e.g., ideas of reference or delusions), functional outcomes (e.g., 
social or occupational functioning), or diagnoses (e.g., attenuated  psychosis 
syndrome or schizophrenia) assessed at various time points by longitudinal 
studies. These empirical observations can further comprise any sign or  bio-
marker that has been associated with the transition from attenuated psychotic 
symptoms into psychotic disorder. For instance, a positive family history for 
psychosis is a strong predictor for transition (Seidman et al. 2010; Thompson 
et al. 2011), indicating that  genetic risk might be a putative cause of the devel-
opment of schizophrenia. 

Moreover, the trajectory from attenuated psychotic symptoms into psy-
chotic disorder has been associated with reduced cortical volume in prefron-
tal, cingulate, and insular regions (Smieskova et al. 2010), as well as with a 
range of neurocognitive defi cits and impaired social perception (Fusar-Poli et 
al. 2012b). This points to a role for constructs, such as “ cognitive control” or 
“ perception and understanding of others,” in the development of  schizophre-
nia. The generative model can also accommodate observed infl uences of treat-
ment on the trajectory toward  schizophrenia, such as the reduction of transition 
rates into schizophrenia by psychosocial interventions (Preti and Cella 2010; 
van der Gaag et al. 2013). 

Phase Ia: Refi nement and Testing of the Hypothesis

After comparing models with different observed and unobservable variables, 
the best generative model is then selected. To illustrate the potential power of 
model selection, let us assume that the selected generative model for the tra-
jectory of attenuated psychotic symptoms into schizophrenia includes both the 
constructs “perception and understanding of others” and “cognitive control.” 
From a pragmatic perspective, the use of this refi ned model would yield more 
precise predictions regarding the trajectory of an individual patient (see Phase 
II: Application). Most importantly, however, the models derived in the integra-
tive framework are not agnostic with respect to the mechanisms underlying 
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new empirical evidence. For instance, a recent large-scale  genome-wide as-
sociation study (GWAS) established an association between schizophrenia and 
several polymorphisms in genes related to  immune function (Schizophrenia 
Working Group of the Psychiatric Genomics Consortium 2014). To accom-
modate this fi nding, the generative model could be extended by the observed 
genotypes and the neurophysiological state “ immune function.” The refi ned 
model would enable more precise predictions about the trajectory of attenu-
ated psychotic symptoms in individual patients that have been genotyped for 
the respective genetic variants. Most notably, however, by concurrently con-
sidering the new neurophysiological state (“immune function”) together with 
other neurophysiological states (“dopaminergic neurotransmission”), novel 
mechanistic hypothesis regarding the etiology of psychotic symptoms could 
be generated and tested. 

Posttraumatic Stress Disorder

PTSD  represents another especially complex disorder (Shay 1994; Kessler et 
al. 1995; Cantor 2005). It has interesting temporal components that are more 
easily accommodated within this framework than in standard practice. 

Phase I: Construction of the Framework

First, we need to take what is known about PTSD and build a framework based 
on these known interactions. Within our integrative framework, we could in-
clude measurements of symptoms or signs (e.g., number of recalls, emotional-
ity of recalls, where the recalls occurred, lack of sleep) as well as the DSM 
categorizations as observations. We would also want to include the time since 
the occurrence of the traumatic event as an observation. Importantly, this inte-
grative framework is able to add in other factors, which may or may not be re-
lated to one another. For example, we could factor in a preexisting cause based 
on hippocampal size. Data from twin studies show that soldiers with PTSD 
as well as their non-trauma-exposed twin (who does not have PTSD) have 
smaller  hippocampi than soldiers without PTSD and their twins (Gilbertson et 
al. 2002). This can be factored in by including an additional constant, Hipp, 
refl ecting hippocampal size (Figure 10.5), allowing us to ask whether the addi-
tion of this constant (hippocampal size) changes the predicted probabilities of 
different latent variables. 

Phase Ia: Refi nement and Testing Theories

There are three classes of theories regarding dysfunction in PTSD: it entails 
(a) an  encoding error (Brown and Kulik 1977), (b) a  decoding error (Nadel and 
Jacobs 1996), and (c) a  recovery error (Redish 2013). The latter can be separat-
ed into a lack of normal posttraumatic recovery or a worsening of symptoms. 
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suggests that trauma is encoded similarly between people who develop PTSD 
and those who do not; however, people who do not develop PTSD recover 
from their trauma differently than people who do (with PTSD patients possibly 
getting worse over time). For example, in “normal” trajectories of memory 
function, memories are initially encoded episodically with a strong “you-are-
there” component, which creates a  mental time travel component during re-
call. Subsequently, with time, storytelling, and sleep, those memories become 
semantic narratives and are decoupled from the episodic mental time travel 
(Nadel and Moscovitch 1997; Squire 2004; Redish 2013). For PTSD patients, 
however, the memory continues to be stored episodically.

These three  theories can be differentiated through prospective research 
that charts the trajectory of the PTSD symptoms and their associated effect 
on functioning over time. Imagine comparing changes in symptoms over time 
after trauma between two groups of individuals, one that eventually develops 
PTSD and another that does not. The encoding hypothesis suggests that there 
would be large differences in reactions to the trauma and associated symptoms 
virtually immediately after the trauma. In contrast, the decoding hypothesis 
suggests that the differences in symptoms would not manifest immediately 
after the trauma, but would emerge soon thereafter and continue over time, but 
with little change. Finally, the recovery hypothesis suggests that non-PTSD 
subjects would change more over time than PTSD subjects. We could test all 
three of these hypotheses using the proposed integrative framework. 

Phase II: Application

The advantage of this framework is that it does not assume that PTSD is a sin-
gle phenomenon represented by one of those three theories—it is possible that 
any given patient may have an encoding error, a decoding error, or a recovery 
error. The Bayesian Integrative Framework provides probabilities of each of 
these underlying dysfunctions from the set of observed symptoms. 

Presumably, each of these dysfunctions will require different treatments. As 
the scientifi c community is refi ning and testing the theories (Phase Ia), it will 
also be necessary to determine how future outcomes (symptoms, diagnoses, 
prognoses) are affected by different treatments. From the probabilities of each 
of these trajectories, it should be possible to identify which treatments would 
be best suited to which patient on an individualized basis.

Phase III: Refi nement

As stated above, one of the major advantages of this integrated framework 
is its inherent fl exibility. As new neurophysiological and neuropsychological 
measures become available, it is easy to incorporate those new observations 
into the Bayesian equations. For example, we could add another neurobiologi-
cal variable of functional connectivity. Georgopoulos et al. (2010) and his team 
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have reported connectivity differences as detected with magnetoencephalog-
raphy (MEG) in patients categorized with PTSD relative to those who do not 
have the disorder. These measurements could be integrated as new instruments 
in Figure 10.5. With our integrative framework, we could ask whether or not 
repeated measures of these connectivity differences allow clearer identifi cation 
of the latent variables or of the patient’s trajectory through that space of latent 
variables. They have, for example, also found that these measurements change 
over time, with more changes in controls than in veterans with PTSD (Anders 
et al. 2015). This example is illustrative of how advances in psychiatric neu-
roscience research will continuously inform and improve the results of this 
model in years to come. 

Obsessive-Compulsive Disorder

For several reasons, OCD provides  another useful test case for our proposed 
integrative framework. First, compared to other neuropsychiatric disorders, 
OCD has excellent convergence in results from neuroimaging studies, dem-
onstrating consistency in identifi ed brain regions with abnormal structure and 
function ( orbitofrontal cortex,  anterior cingulate cortex,  striatum, and anterior 
thalamus) across imaging modalities (e.g., structural MRI, fMRI, PET, DTI) 
and research sites (Baxter et al. 1988; Swedo et al. 1989; Rauch et al. 1994; 
Alptekin et al. 2001; Menzies et al. 2008). This contributes to multiple types of 
reliable observations that can be plugged into the model, including neuroimag-
ing fi ndings as well as symptoms and DSM diagnoses. This, in turn, may lead 
to greater power due to the generation of smaller confi dence intervals. In addi-
tion, with OCD we have a clear theoretical hypothesis regarding a potential set 
of latent variables that may have importance in driving OCD symptoms; this 
will be described further below in Phase Ia. 

Phase I: Construction of the Framework

In Phase I, as described in the previous two examples, the proposed Bayesian 
Integrative Framework can be used to assemble empirical observations about 
OCD from both clinical experience (e.g., DSM-based diagnoses) and the clini-
cal literature (e.g., genetic risk factors, performance on neurocognitive tasks, 
treatment outcomes) to build a generative model. As delineated in Figure 10.6, 
these observations could include a broad array of data such as:

• clinical measurement of symptom presence (obsessions, compulsions, 
anxiety levels, tics),

• symptom types (e.g., contamination obsessions/compulsions, doubt ob-
sessions/checking compulsions),

• symptom levels (as measured by reliable instruments such as YBOCS, 
HAM-A, HAM-D; see Figure 10.6),
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• level of insight,
• presence of  comorbidities (e.g.,  major depressive disorder, tic 

disorder/ Tourette syndrome,  obsessive-compulsive personality disor-
der,  hoarding disorder),

• response to both  pharmacotherapy and  psychotherapy treatments,
• performance on measures of neurocognitive functions implicated in 

OCD (e.g., habit-learning tasks, prepulse inhibition),

Putative causes
Hyp = Hyperactivity in cortico-striato-thalamo-cortical circuits

RG = Risk genes

Latent constructs
Anxiety/ threat processing, model-based (goal-directed) learning, 

model-free (habit) learning, sensorimotor gating, response inhibition

Symptoms
Obsessions
Compulsions

Anxiety
Tics 

Instruments/
biomarkers

YBOCS
HAM-A/D

Diagnoses

Hidden (physiological) states
Dysfunctions in goal-directed behavior,

habit learning, or anxiety processing

( )( )P LV t P

Prognoses
( )( )P P LV t

PPI
SSRT

Habit learning
Fear cond.

Dx1(t): OCD
Dx2(t): MDD
Dx3(t): Tourette
Dx4(t): OCPD
Dx5(t): Hoarding
Dx6(t): Panic DO

Px1:goal-directed
Px2:habit
Px3:anxiety

Figure 10.6 Generative model describing a patient presenting with OCD symptoms. 
As for PTSD, a set of hypothesized and explanatory latent constructs (LV(t)) are as-
sumed to vary over time and can be predicted from putative causes—including constant 
causes, such as risk genes (RG), and temporally changing causes, such as hyperactivity 
in  cortico-striato-thalamo-cortical circuits (Hyp)—and from observations (e.g., symp-
toms, measures on instruments, biomarkers, and clinical diagnoses). Latent constructs 
will show a progression through time, likely following one of the three hypothesized 
theories: defi cits in  goal-directed behavior,  habit learning, or  anxiety processing/ex-
pression. Prognoses are effectively a categorization of these trajectories. The integra-
tive framework allows theories to be tested and prognoses to be predicted, making it 
useful to address basic issues in fundamental science (e.g., causes of OCD) as well as 
clinical science (e.g., effective treatments for OCD). YBOCS: Yale-Brown obsessive-
compulsive scale; HAM-A: Hamilton anxiety rating scale; HAM-D: Hamilton depres-
sion scale; PPI: prepulse inhibition; SSRT: stop signal reaction time; Fear cond.: fear 
conditioning; MDD: major depressive disorder; OCPD: obsessive-compulsive person-
ality disorder; Panic DO:  panic disorder.
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• fear conditioning,
• stop signal reaction time tasks, and
• putative causes (e.g., hyperactivity in cortico-striato-thalamo-cortical 

circuits that can be observed with both PET and fMRI; risk genes). 

Importantly, these variables can be weighted according to the strength of 
the available evidence so that consistently replicated fi ndings would make a 
greater contribution to the model. For example, despite the fact that no  GWAS 
study to date has identifi ed strong genome-wide candidates for OCD risk genes 
(Stewart et al. 2013; Mattheisen et al. 2015), genetic association studies have 
implicated an association between the  glutamate transporter, SLC1A1, and 
OCD (Bloch and Pittenger 2010; Wu et al. 2012). Having an SLC1A1 risk 
allele would therefore impact the model. In addition, as previously discussed, 
variables can be readily added or subtracted from the generative model as the 
literature evolves, and the effect of these changes on the probabilistic outcome 
(e.g., prognosis, illness trajectory, likely response to treatment) could then be 
assessed.

Phase Ia: Refi nement and Testing Theories

In part because there is a solid foundation of evidence pointing to the likely 
role of both  cortico-striato-thalamo-cortical circuits and  anxiety/fear-related 
circuits in the pathophysiology of OCD, the fi eld has likewise converged on 
several theories regarding the evolution of OCD symptoms. For purposes of 
this example, we will focus on three main theories which suggest that OCD 
results from (a) dysfunction in  goal-directed behavior systems, (b) overactive/
dysfunctional habit systems, and/or (c) dysregulation of  threat processing and/
or anxiety expression. 

Recent work has suggested that OCD symptoms can result from an imbal-
ance in the systems guiding  action selection: the goal-directed “model-based” 
and the habitual “model-free” systems. Initial evidence has pointed mostly to 
dysfunction in the model-free, or habit, system (Gillan et al. 2011, 2014, 2015), 
with OCD patients being more prone to forming habits both in neutral condi-
tions and “in avoidance” (i.e., to avoid a perceived threatening stimulus, such 
as a shock). This would suggest that excessive “model-free” action selection 
could be used as a latent construct refl ecting a hidden physiologic state in our 
nosological framework of OCD. However, other evidence from both clinical 
deep-brain stimulation studies (Greenberg et al. 2006, 2010; Goodman et al. 
2010; de Koning et al. 2011; Figee et al. 2014; Mantione et al. 2015), imaging 
studies (Baxter et al. 1988; Swedo et al. 1989; Rauch et al. 1994; Alptekin et al. 
2001; Mataix-Cols et al. 2004), and preclinical studies in mice (Ahmari et al. 
2013) suggests that dysfunction in medial orbitofrontal and ventral striatal re-
gions linked to goal-directed systems can lead to abnormal compulsive behav-
iors. Thus it would be useful to be able to determine how changing the balance 
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between the model-based and model-free systems would affect symptom pre-
sentation, diagnosis, and other observable entities. Using our model, this could 
be accomplished using different latent variables for model-based, model-
free, or arbitrators between model-based and model-free systems (Dayan and 
Balleine 2002; Redish et al. 2008; Dezfouli and Balleine 2012; Wunderlich et 
al. 2012a; Dolan and Dayan 2013; Dayan and Berridge 2014; Lee et al. 2014). 

Finally, there has been debate, in part heightened by the recent separation of 
OCD from other  anxiety disorders in  DSM-5, about whether abnormalities in 
anxiety regulation or  threat processing play a pathologic role in OCD. A poten-
tial role for anxiety dysregulation in the pathogenesis of OCD is supported by 
factors including its prominence as a clinical symptom in OCD patients, obser-
vations of fear-conditioning abnormalities (Milad et al. 2013), and enhanced 
avoidance habits in OCD (Gillan et al. 2014), and reports of trauma-induced 
OCD (Dykshoorn 2014). Because the observable entities of symptoms (in-
cluding anxiety), brain metabolic state (functional imaging), and neurocogni-
tive task performance are all known in the recent studies of habit formation in 
OCD, these data could potentially be used to validate the effi cacy of the model 
in one defi ned case. 

Phases II and III: Application and Refi nement

As described above, the potential power of this Bayesian framework lies in the 
fact that it is agnostic about the latent constructs and theories which make up 
a particular mental illness. It therefore easily incorporates the possibility that a 
disease currently classifi ed as a single entity in DSM-5 could be broken down 
into several different theory-based categories with different disease and treat-
ment trajectories. In fact, in an ideal case, the framework would actually help 
to identify valid patient subgroups through an iterative process of including 
progressively higher quality data in the model as the fi eld evolves, and exam-
ining  treatment outcomes in subpopulations of patients. Ultimately, delineat-
ing whether valid patient subcategories exist, or identifying which (if any) of 
the theories described in Phase Ia underlies pathophysiology for a particular 
patient, could be extremely important for guiding treatment. For example, a 
patient with excessive habits leading to an increased propensity to develop 
compulsions might benefi t most from habit-reversal training, whereas a patient 
with high levels of anxiety might benefi t more from treatment with selective 
 serotonin reuptake inhibitors (SSRIs) and classic exposure therapy with re-
sponse prevention.

There are, of course, potential limitations in using OCD as a test case. For 
example, fi rst, unlike several other psychiatric disorders, there is limited data 
available on longitudinal trajectories in OCD throughout the life span, due to a 
lack of large-scale multisite longitudinal studies. Second, though similar brain 
regions are consistently highlighted across multiple imaging studies, behavior-
al studies of neurocognitive functions such as set shifting, response inhibition, 
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and reversal learning are more variable. Although these factors may currently 
limit the richness of the data that can be incorporated into the model, they do 
not affect utility. Indeed, it is important to emphasize that “bad data” or data 
not relevant to the probable outcomes will automatically be removed from the 
integrative framework.

Special Considerations: Comorbidity

OCD is a particularly useful case example for exploring the issue of how our 
Bayesian framework can integrate comorbidities.  OCD is highly comorbid 
with several other  DSM-5 diagnoses, including  major depressive disorder, 
 panic disorder,  Tourette syndrome, hoarding disorder, and obsessive-compul-
sive personality disorder (Murphy et al. 2013). In fact, hoarding disorder was 
only separated from OCD in the most recent edition of DSM based on fi nd-
ings from neuroimaging studies which identifi ed distinct neurobiological sub-
strates and differences in treatment response. This has raised the question of 
whether OCD patients with these comorbid disorders should be considered as 
belonging to separate diagnostic categories. This is an important consideration 
because there is some evidence that OCD patients with different  comorbidi-
ties may have distinct responses to treatments. For example, it is commonly 
known that  hoarding, which used to be considered an OCD symptom, is more 
resistant to both pharmacotherapeutic and psychotherapeutic treatment than 
classic OCD symptoms (Bloch et al. 2014; Mataix-Cols 2014). In addition, a 
recent study suggested that augmentation with atypical  antipsychotic medica-
tions may be most useful in OCD patients who have comorbid tics (Bloch et 
al. 2006). Within the context of our proposed framework, comorbid conditions 
can be easily included in the generative model as further empirical observa-
tions (see Figure 10.6). By combining this with other observations, including 
neuroimaging data, genetic information, and neurocognitive task performance, 
we can determine the impact of comorbidities on OCD illness trajectories and 
potentially glean information about the most effective treatment interventions 
through the iterative process described above.

Discussion

The Bayesian Integrative Framework that we propose inverts the standard 
model of nosology. That is, rather than subscribing to the notion that particular 
entities that are classifi ed by diagnostic categories cause symptoms, we are 
proposing that diagnostic classifi cation and symptoms are a consequence of 
latent variables (or constructs) which themselves are caused by evolving but 
hidden pathological states. We consider the problem of nosology as modeling 
the diagnostic (and prognostic) process, where diagnosis is an observation or 
an outcome as opposed to a cause. Implicit in this framework is the mapping 
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from the hidden or unobservable causes of psychopathology to observable 
symptoms and signs, and “good practice” diagnostic outcomes. This frame-
work, therefore, accommodates risk assessment and the resolution of ambigu-
ous nosological problems (e.g., comorbidity). Crucially, it accommodates, but 
is not limited to, currently accepted diagnostic categories (e.g., DSM). Further, 
it accounts for developmental and longitudinal trajectories of mental illness. 
Finally, it furnishes a formal link between putative constructs (e.g., RDoC 
constructs) and clinical categories, thereby harnessing the complementary per-
spectives afforded by dimensional and categorical approaches. Below we will 
further discuss the value of this model over the current diagnostic process and 
practical considerations for the implementation of this framework. 

How Do We Defi ne Success of a Diagnostic System?

Given that  diagnostic systems such as nosologies exist primarily to assist cli-
nicians in the management of their patients, the measure of the success of a 
diagnostic system can be framed as the degree to which it achieves that goal. 
There are several ways in which a diagnostic system can assist clinicians, all 
of which are covered under the broad rubric “clinical utility.” 

The fi rst such use, the one in which categorical classifi cations like the DSM 
have been the most successful, is facilitating communication among clinicians, 
between clinicians and patients/families, and between clinicians and administra-
tors. It will be important to retain this strength in any newly developed scheme.

A second use is to help clinicians select the optimal  treatment for a pa-
tient. Ideally, making a diagnosis would be an initial critical step in guiding 
the choice of treatment (i.e., if the clinician makes a diagnosis of X, he or she 
can be confi dent that treatment Y is very likely to be effective). In actuality, 
however, there is an uncertain relationship between the current DSM diagnos-
tic categories and treatment. Most psychiatric treatments are at least somewhat 
effective for a variety of categories that cut across the various DSM categories: 
 SSRIs work for depressive disorders, OCD, PTSD, premenstrual dysphoric 
disorders, and others (Wagstaff et al. 2002; Saxena et al. 2007; Rapkin and 
Winer 2008). Moreover, the effectiveness of a particular intervention in treat-
ing a particular diagnosis has been disappointing for some patient subgroups 
within a diagnostic category. In treating  major depressive disorder, the likeli-
hood of any signifi cant clinical benefi t from  antidepressant treatment is no 
better than 70%, and the likelihood of full remission is far lower (e.g., Rush et 
al. 2006b; Khin et al. 2011). 

A third use is to help clinicians predict the future course and outcome of 
a psychiatric presentation (e.g., to inform the patient how likely it is for the 
symptoms to remit, or get worse, over time, as well as what environmental 
or other factors are likely to make the symptoms worse, or better). As with 
predicting treatment response, because of the range of potential course and 
outcome trajectories associated with each disorder, meeting criteria for a DSM 
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category provides limited information in terms of predicting a future course. 
For both  treatment and prognostic prediction, much of the problem stems from 
the fact that the diagnostic categories are essentially “black boxes” which ob-
scure crucial mechanistic differences between individual patients included in 
a particular category. This suggests that in order for a diagnostic system to be 
successful, it must incorporate mechanistic processes in the diagnostic formu-
lation, which is exactly what the proposed framework will do.

One example of a framework that incorporates the kind of categorical di-
agnostic decisions that are essential to clinical practice, while grounding these 
decisions in a biologically meaningful process, is the “ harmful dysfunction” 
model (Wakefi eld 1992a, b, 2007). The harmful dysfunction model defi nes 
psychiatric disorders as requiring both a value judgment (harm, negative con-
sequences) and a dysfunction judgment (when the condition represents dys-
function of a naturally selected mechanism or trait). Importantly, harm is not 
a scientifi c question but rather a value question. Harm is defi ned as something 
that causes distress or is socially disvalued, thus “harm” inevitably involves a 
value judgment. The harmful dysfunction analysis specifi es that neither harm 
without dysfunction (e.g., procrastination, illiteracy, grief) nor dysfunction 
without harm (e.g.,  synesthesia) is a disorder. While the harmful dysfunction 
analysis provides an illustrative example of incorporating mechanisms into 
categorical diagnoses, this model has not been widely accepted due to the lim-
ited knowledge about the nature of “natural functions.” Regardless, nosologies 
that refl ect the harmful dysfunction combinatorial approach possess major ad-
vantages. For progress to occur, such nosologies should utilize the knowledge 
we have about the brain to inform diagnostic decisions, as we have proposed 
to do with the Bayesian Integrative Framework.

Problems with the Current Diagnostic Process

Creating Categories out of Continuous Data

Research demonstrates the continuous nature of many psychiatric problems, 
without a natural breakpoint between health and disease (Fergusson and 
Horwood 1995; Kendler and Gardner 1998; Fergusson et al. 2005). As a result, 
a major problem faced by diagnosticians arises from the need to impose a cat-
egorical structure on information that is largely continuous in nature (Van Os et 
al. 1999). For example, when we examine overall levels of multiple symptoms 
related to  anxiety, we fi nd that we can arrange individuals in a continuous dis-
tribution, from few to many symptoms. Moreover, when we examine the pre-
dictive relationship between symptom number and various external validators, 
such as outcome or treatment response, we see no natural break point in these 
relationships. More symptoms predict worse outcome or treatment response in 
a continuous fashion.
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Another example of continuous data that can be problematic relates to the 
risk of a false-positive or false-negative diagnosis. When an individual re-
ceives a psychiatric diagnosis in error, this carries risk, both due to delivery 
of treatment and its resulting harm as well as to the stigma associated with 
many psychiatric diagnoses. Again, this gives a set of continuous relationships, 
such that the more extreme the treatment, the greater the risk. Other areas of 
medicine provide guidance for the clinician in the circumstances that currently 
confront the psychiatrists. Clinicians can derive categories based on the point 
on a continuous scale where the benefi ts associated with treatment outweigh 
the risks of false positives. Such an approach has been, for example, used in 
obstetrics. In some consensus guidelines, age 35 had been considered a break-
point when considering the appropriate age for amniocentesis. This age was a 
point where the rate of a positive diagnosis of a genetic anomaly became great-
er than the rate of miscarriage associated with the procedure. However, this 
crossing of risks assumes that the parent’s judgment of negative consequences 
is equivalent between genetic anomaly and miscarriage. Clearly, in current 
practice, other factors infl uence decisions about amniocentesis. Discussing the 
risks separately allows the parents to make decisions based on their own value 
judgments of risk. Similar computations apply for the treatment of hyperten-
sion, where treatment is initiated when the benefi ts, in terms of reducing risk, 
outweigh the risks associated with side effects. 

Psychiatry currently faces a few problems in the applications of this ap-
proach. Importantly, we need more data to precisely quantify the nature of 
risks associated with various levels of symptoms, various treatments, and false 
positive diagnoses. In addition, we need a process for identifying thresholds at 
which risks from declaring a positive diagnosis outweigh the risks from a false 
positive diagnosis. The proposed  Bayesian Integrative Framework addresses 
these problems and provides guidance for better predicting outcomes and treat-
ments in a way that maintains the continuous nature of risk and thus minimizes 
the adverse consequences of false-positive diagnoses. 

Accounting for Trajectories

Most psychiatric disorders have a longitudinal evolution, with underlying risk 
factors and symptoms changing over time. Still, current diagnostic systems 
incompletely incorporate a developmental perspective and do not fully utilize 
repeated, longitudinal observations. This is important because clinical deci-
sions are often based on estimating the probability of future trajectories for a 
patient that can only be determined by repeated observations. For example, the 
fi rst episode of a mild disorder in adolescence (e.g., subthreshold depression) 
might spontaneously remit, progress to a full major depressive episode, or her-
ald future  bipolar disorder (Rutter et al. 2006). Many psychiatric disorders are 
preceded by earlier diffi culties in childhood (Kim-Cohen et al. 2003; Pine and 
Fox 2015). For example,  mood disorders are commonly preceded by anxiety 
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and behavioral problems (conduct disorder). Schizophrenia can be preceded 
by earlier childhood symptoms and  neurodevelopmental impairments involv-
ing  anxiety, inattention, as well as cognitive, motor, language, and social com-
munication impairments (Kim-Cohen et al. 2003; Rutter et al. 2006; Dickson 
et al. 2012). Most individuals with childhood anxiety or conduct disorder, 
however, do not go on to develop serious forms of  mood disorder (e.g., bipo-
lar disorder), and most children with neurodevelopmental impairments do not 
develop schizophrenia. 

Importantly, these variable trajectories pose problems for  clinical decision 
making. Clinical symptoms, such as depression, observed at a particular point 
in development, can emerge through multiple earlier developmental trajecto-
ries—a process often referred to as  equifi nality (see Cicchetti and Rogosch 
1996). The idea of equifi nality can be applied to multiple factors beyond de-
velopment. Thus, risk factors or brain dysfunction can also be viewed from 
this perspective. Two distinct risk factors or two different types of brain dys-
function can predict the same symptomatic presentation. Heterogeneity from 
equifi nality arises when different pathophysiological processes give rise to the 
presentation of similar symptoms. Another form of  heterogeneity arises from 
a process termed  multifi nality. This means that one risk factor, such as a trau-
matic life event, can give rise to multiple different outcomes. Like equifi nality, 
the idea of multifi nality can be applied to development, whereby one develop-
mental profi le has many different outcomes (as discussed above). This can also 
be applied to risk factors (e.g., genetic variants) and brain function, whereby a 
single risk factor or a single type of brain dysfunction gives rise to many dif-
ferent outcomes.

The proposed integrative framework will provide a means to incorporate and 
appropriately weight all of the available observations (e.g., clinical variables, 
cognitive variables, family history of bipolar disorder), and, in turn, inform 
clinicians as to the probability of the trajectory their patient is most likely to 
follow. This will be important in infl uencing decisions about whether or not to 
intervene, balancing the risks versus side effects of diagnostic labeling or treat-
ment, choosing an appropriate intervention, and selecting the intensity of treat-
ment and follow up—ultimately improving diagnostic and treatment outcomes.

Knowing if the Model Is Right or Wrong

We have cast the problem of optimizing a Bayesian Integrative Framework 
among generative models of diagnostic/prognostic outcomes and their associ-
ated symptoms and signs. So how do we know if a model generated from this 
framework is correct or incorrect? Strictly speaking we can dissolve this ques-
tion by noting that all models are wrong but some have much more evidence 
than others (recall that model evidence scores the goodness of a model in terms 
of the right balance between the accuracy of fi tting some data and the complex-
ity of the model; see above).

From “Computational Psychiatry: New Perspectives on Mental Illness,”  
A. David Redish and Joshua A. Gordon, eds. 2016. Strüngmann Forum Reports, vol. 20, 

series ed. J. Lupp. Cambridge, MA: MIT Press. ISBN 978-0-262-03542-2.



198 S. B. Flagel et al. 

The notion of right and wrong presupposes that there are only two models—
a correct and an incorrect model. Formally, the idea of right and wrong models 
is implicitly assumed in classical statistics and corresponds to the null and 
alternative hypotheses, respectively. We reject the null model as wrong if there 
is enough evidence to make one chosen statistic suffi ciently large. However, 
in Bayesian model comparison the number of competing models or hypoth-
eses can be much greater than two, and each model has its own evidence. 
 Bayesian model comparison then reduces to selecting those models that have 
the greatest evidence. This is a simple thing to do because the difference in log 
evidence between one model and another corresponds to the log of their rela-
tive (marginal) likelihood. For example, if the best model has a log evidence 
of three or more, relative to the next best model, then the best model is twenty 
(exp(3) = 20) times more likely than all of its competitors. This, however, is a 
relative statement; it only pertains to the set or space of models considered. In 
this sense, there is no right or wrong model—only models which are better or 
worse at explaining any given data in a parsimonious fashion. In this regard, 
the current integrative framework will allow us to identify the “best” fi t model 
on a case by case basis and will, undoubtedly, provide a foundation to improve 
upon the current diagnostic system in psychiatry. 

Potential Problems

The implementation of this framework faces technical and community accep-
tance challenges—challenges that will need to be addressed with outreach, 
training, and continuous communication between the fi elds of computation, 
psychiatry, and neuroscience. A number of advances have already developed 
in this regard, with the emergence of new training programs and funding op-
portunities and new journals (e.g., Computational Psychiatry). In addition, a 
 Transcontinental Computational Psychiatry Workgroup has recently emerged 
out of this Ernst Strüngmann Forum. This group consists of scientists from the 
fi elds of computation, neuroscience, and psychiatry who have begun to convene 
on a regular basis to discuss and  advance the fi eld of computational psychiatry. 
In turn, new conferences are being developed and the fi eld is gaining increasing 
recognition. Moreover, we are aware that there will be fi nancial and political 
barriers that will need to be overcome in adopting this framework. Finally, it 
is important to note (as outlined in the discussion of the Phases above) that 
multiple iterations of this model will be required for continual updates and 
improvements based on the information that we have at any given time.

Summary

In this chapter we have proposed and described the  Bayesian Integrative 
Framework—a novel integrative framework intended to integrate neuroscience 

From “Computational Psychiatry: New Perspectives on Mental Illness,”  
A. David Redish and Joshua A. Gordon, eds. 2016. Strüngmann Forum Reports, vol. 20, 

series ed. J. Lupp. Cambridge, MA: MIT Press. ISBN 978-0-262-03542-2.



Novel Framework for Improving Psychiatric Diagnostic Nosology 199

and clinical psychiatry research, enhance the current diagnostic process, and 
improve treatment outcomes in psychiatry. We have identifi ed several im-
portant features of the proposed framework that will allow us to circumvent 
some of the challenges currently being faced in the fi eld of psychiatry. For one, 
we will be able to integrate mechanistic processes in diagnostic formulation; 
that is, we can incorporate any knowledge we have about underlying patho-
physiology to inform diagnostic decisions. Indeed, the  Bayesian Integrative 
Framework provides the necessary bridge between putative constructs (e.g., 
RDoC) and clinical diagnoses, thereby linking the complementary perspec-
tives afforded by dimensional and categorical approaches. It also allows us 
to incorporate many different fl avors of data at multiple layers. One of the 
most valuable features of this framework is perhaps its ability to account for 
and incorporate longitudinal trajectories that may nuance diagnosis, prognosis, 
and treatment. This framework will yield a better understanding of individual 
differences and, importantly, how individual differences in brain function give 
rise to individual differences in behavior.
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